Spaces:
Running
Running
Start app
Browse files- app.py +118 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import io
|
| 2 |
+
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import plotly.express as px
|
| 5 |
+
import streamlit as st
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from easyocr import Reader
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from transformers import(
|
| 11 |
+
LayoutLMv3FeatureExtractor,
|
| 12 |
+
LayoutLMv3ForSequenceClassification,
|
| 13 |
+
LayoutLMv3Processor,
|
| 14 |
+
LayoutLMv3TokenizerFast,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 18 |
+
MICROSOFT_MODEL_NAME = "microsoft/layoutlmv3-base"
|
| 19 |
+
MODEL_NAME = "curiousily/layoutlmv3-financial-document-classification"
|
| 20 |
+
|
| 21 |
+
def create_bounding_box(bbox_data,
|
| 22 |
+
width_scale: float,
|
| 23 |
+
height_scale: float):
|
| 24 |
+
xs = []
|
| 25 |
+
ys = []
|
| 26 |
+
for x, y in bbox_data:
|
| 27 |
+
xs.append(x)
|
| 28 |
+
ys.append(y)
|
| 29 |
+
|
| 30 |
+
left = int(min(xs) * width_scale)
|
| 31 |
+
top = int(min(ys) * height_scale)
|
| 32 |
+
right = int(max(xs) * width_scale)
|
| 33 |
+
bottom = int(max(ys) * height_scale)
|
| 34 |
+
|
| 35 |
+
return [left, top, right, bottom]
|
| 36 |
+
|
| 37 |
+
@st.cache_resource
|
| 38 |
+
def create_ocr_reader():
|
| 39 |
+
return Reader(["en"])
|
| 40 |
+
|
| 41 |
+
@st.cache_resource
|
| 42 |
+
def create_processor():
|
| 43 |
+
feature_extractor = LayoutLMv3FeatureExtractor(apply_ocr=False)
|
| 44 |
+
tokenizer = LayoutLMv3TokenizerFast.from_pretrained(MICROSOFT_MODEL_NAME)
|
| 45 |
+
return LayoutLMv3Processor(feature_extractor, tokenizer)
|
| 46 |
+
|
| 47 |
+
@st.cache_resource
|
| 48 |
+
def create_model():
|
| 49 |
+
model = LayoutLMv3ForSequenceClassification.from_pretrained(MODEL_NAME)
|
| 50 |
+
return model.eval().to(DEVICE)
|
| 51 |
+
|
| 52 |
+
def predict(image: Image,
|
| 53 |
+
reader: Reader,
|
| 54 |
+
processor: LayoutLMv3Processor,
|
| 55 |
+
model: LayoutLMv3ForSequenceClassification):
|
| 56 |
+
|
| 57 |
+
ocr_result = reader.readtext(image)
|
| 58 |
+
|
| 59 |
+
width, height = image.size
|
| 60 |
+
width_scale = 1000 / width
|
| 61 |
+
height_scale = 1000 / height
|
| 62 |
+
|
| 63 |
+
words = []
|
| 64 |
+
boxes = []
|
| 65 |
+
|
| 66 |
+
for bbox, word, confidence in ocr_result:
|
| 67 |
+
words.append(word)
|
| 68 |
+
boxes.append(create_bounding_box(bbox, width_scale, height_scale))
|
| 69 |
+
|
| 70 |
+
encoding = processor(image,
|
| 71 |
+
words,
|
| 72 |
+
boxes = boxes,
|
| 73 |
+
max_length = 512,
|
| 74 |
+
padding = "max_length",
|
| 75 |
+
truncation = True,
|
| 76 |
+
return_tensors = "pt",)
|
| 77 |
+
|
| 78 |
+
with torch.inference_mode():
|
| 79 |
+
output = model(
|
| 80 |
+
input_ids = encoding["input_ids"].to(DEVICE),
|
| 81 |
+
attention_mask = encoding["attention_mask"].to(DEVICE),
|
| 82 |
+
bbox = encoding["bbox"].to(DEVICE),
|
| 83 |
+
pixel_values = encoding["pixel_values"].to(DEVICE)
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
logits = output.logits
|
| 87 |
+
predicted_class = logits.argmax()
|
| 88 |
+
probabilities = F.softmax(logits, dim = -1).flatten().tolist()
|
| 89 |
+
|
| 90 |
+
return predicted_class.detach().item(), probabilities
|
| 91 |
+
|
| 92 |
+
reader = create_ocr_reader()
|
| 93 |
+
processor = create_processor()
|
| 94 |
+
model = create_model()
|
| 95 |
+
|
| 96 |
+
uploaded_file = st.file_uploader("Upload Document Image", ["jpg", "png"])
|
| 97 |
+
if uploaded_file is not None:
|
| 98 |
+
bytes_data = io.BytesIO(uploaded_file.getvalue())
|
| 99 |
+
image = Image.open(bytes_data)
|
| 100 |
+
st.image(image, "Your Document")
|
| 101 |
+
|
| 102 |
+
predicted_class, probabilities = predict(image,
|
| 103 |
+
reader,
|
| 104 |
+
processor,
|
| 105 |
+
model)
|
| 106 |
+
predicted_label = model.config.id2label[predicted_class]
|
| 107 |
+
|
| 108 |
+
st.markdown(f"Predicted document type: **{predicted_label}**")
|
| 109 |
+
|
| 110 |
+
df_predictions = pd.DataFrame(
|
| 111 |
+
{"Document": list(model.config.id2label.values()),
|
| 112 |
+
"Confidence": probabilities}
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
fig = px.bar(df_predictions, x = "Document", y = "Confidence")
|
| 116 |
+
st.plotly_chart(fig, use_container_width = True)
|
| 117 |
+
|
| 118 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
easyocr==1.7.1
|
| 2 |
+
pandas==2.2.0
|
| 3 |
+
Pillow==9.5.0
|
| 4 |
+
plotly-express==0.4.1
|
| 5 |
+
torch==2.2.0
|
| 6 |
+
transformers==4.37.2
|