Spaces:
Paused
Paused
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates | |
# // | |
# // Licensed under the Apache License, Version 2.0 (the "License"); | |
# // you may not use this file except in compliance with the License. | |
# // You may obtain a copy of the License at | |
# // | |
# // http://www.apache.org/licenses/LICENSE-2.0 | |
# // | |
# // Unless required by applicable law or agreed to in writing, software | |
# // distributed under the License is distributed on an "AS IS" BASIS, | |
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# // See the License for the specific language governing permissions and | |
# // limitations under the License. | |
import spaces | |
import subprocess | |
import os | |
import sys # <-- ADICIONADO PARA MANIPULAR O CAMINHO DO PYTHON | |
# Clone the repository to ensure all files are available | |
# Make sure git-lfs is installed | |
subprocess.run("git lfs install", shell=True, check=True) | |
# Clone the repository only if it doesn't exist | |
if not os.path.exists("SeedVR2-3B"): | |
subprocess.run("git clone https://huggingface.co/spaces/ByteDance-Seed/SeedVR2-3B", shell=True, check=True) | |
# Define the repository directory | |
repo_dir = 'SeedVR2-3B' | |
# Change the current working directory to the cloned repository | |
os.chdir(repo_dir) | |
# Add the repository directory to the Python path to allow imports | |
sys.path.insert(0, os.path.abspath('.')) # <-- CORREÇÃO PRINCIPAL AQUI | |
import torch | |
import mediapy | |
from einops import rearrange | |
from omegaconf import OmegaConf | |
print(os.getcwd()) | |
import datetime | |
from tqdm import tqdm | |
import gc | |
from data.image.transforms.divisible_crop import DivisibleCrop | |
from data.image.transforms.na_resize import NaResize | |
from data.video.transforms.rearrange import Rearrange | |
if os.path.exists("./projects/video_diffusion_sr/color_fix.py"): | |
from projects.video_diffusion_sr.color_fix import wavelet_reconstruction | |
use_colorfix=True | |
else: | |
use_colorfix = False | |
print('Note!!!!!! Color fix is not avaliable!') | |
from torchvision.transforms import Compose, Lambda, Normalize | |
from torchvision.io.video import read_video | |
import argparse | |
from PIL import Image | |
from common.distributed import ( | |
get_device, | |
init_torch, | |
) | |
from common.distributed.advanced import ( | |
get_data_parallel_rank, | |
get_data_parallel_world_size, | |
get_sequence_parallel_rank, | |
get_sequence_parallel_world_size, | |
init_sequence_parallel, | |
) | |
from projects.video_diffusion_sr.infer import VideoDiffusionInfer | |
from common.config import load_config | |
from common.distributed.ops import sync_data | |
from common.seed import set_seed | |
from common.partition import partition_by_groups, partition_by_size | |
import gradio as gr | |
from pathlib import Path | |
from urllib.parse import urlparse | |
from torch.hub import download_url_to_file, get_dir | |
import shlex | |
import uuid | |
import mimetypes | |
import torchvision.transforms as T | |
os.environ["MASTER_ADDR"] = "127.0.0.1" | |
os.environ["MASTER_PORT"] = "12355" | |
os.environ["RANK"] = str(0) | |
os.environ["WORLD_SIZE"] = str(1) | |
subprocess.run( | |
"pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True, | |
) | |
# Install apex from the local wheel file | |
if os.path.exists("apex-0.1-cp310-cp310-linux_x86_64.whl"): | |
subprocess.run(shlex.split("pip install apex-0.1-cp310-cp310-linux_x86_64.whl")) | |
print(f"✅ setup completed Apex") | |
def configure_sequence_parallel(sp_size): | |
if sp_size > 1: | |
init_sequence_parallel(sp_size) | |
def configure_runner(sp_size): | |
config_path = os.path.join('./configs_3b', 'main.yaml') | |
config = load_config(config_path) | |
runner = VideoDiffusionInfer(config) | |
OmegaConf.set_readonly(runner.config, False) | |
init_torch(cudnn_benchmark=False, timeout=datetime.timedelta(seconds=3600)) | |
configure_sequence_parallel(sp_size) | |
runner.configure_dit_model(device="cuda", checkpoint='./ckpts/seedvr2_ema_3b.pth') | |
runner.configure_vae_model() | |
# Set memory limit. | |
if hasattr(runner.vae, "set_memory_limit"): | |
runner.vae.set_memory_limit(**runner.config.vae.memory_limit) | |
return runner | |
def generation_step(runner, text_embeds_dict, cond_latents): | |
def _move_to_cuda(x): | |
return [i.to(torch.device("cuda")) for i in x] | |
noises = [torch.randn_like(latent) for latent in cond_latents] | |
aug_noises = [torch.randn_like(latent) for latent in cond_latents] | |
print(f"Generating with noise shape: {noises[0].size()}.") | |
noises, aug_noises, cond_latents = sync_data((noises, aug_noises, cond_latents), 0) | |
noises, aug_noises, cond_latents = list( | |
map(lambda x: _move_to_cuda(x), (noises, aug_noises, cond_latents)) | |
) | |
cond_noise_scale = 0.1 | |
def _add_noise(x, aug_noise): | |
t = ( | |
torch.tensor([1000.0], device=torch.device("cuda")) | |
* cond_noise_scale | |
) | |
shape = torch.tensor(x.shape[1:], device=torch.device("cuda"))[None] | |
t = runner.timestep_transform(t, shape) | |
print( | |
f"Timestep shifting from" | |
f" {1000.0 * cond_noise_scale} to {t}." | |
) | |
x = runner.schedule.forward(x, aug_noise, t) | |
return x | |
conditions = [ | |
runner.get_condition( | |
noise, | |
task="sr", | |
latent_blur=_add_noise(latent_blur, aug_noise), | |
) | |
for noise, aug_noise, latent_blur in zip(noises, aug_noises, cond_latents) | |
] | |
with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True): | |
video_tensors = runner.inference( | |
noises=noises, | |
conditions=conditions, | |
dit_offload=False, | |
**text_embeds_dict, | |
) | |
samples = [ | |
( | |
rearrange(video[:, None], "c t h w -> t c h w") | |
if video.ndim == 3 | |
else rearrange(video, "c t h w -> t c h w") | |
) | |
for video in video_tensors | |
] | |
del video_tensors | |
return samples | |
def generation_loop(video_path='./test_videos', seed=666, fps_out=12, batch_size=1, cfg_scale=1.0, cfg_rescale=0.0, sample_steps=1, res_h=1280, res_w=720, sp_size=1): | |
runner = configure_runner(1) | |
def _extract_text_embeds(): | |
# Text encoder forward. | |
positive_prompts_embeds = [] | |
for texts_pos in tqdm(original_videos_local): | |
text_pos_embeds = torch.load('pos_emb.pt') | |
text_neg_embeds = torch.load('neg_emb.pt') | |
positive_prompts_embeds.append( | |
{"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]} | |
) | |
gc.collect() | |
torch.cuda.empty_cache() | |
return positive_prompts_embeds | |
def cut_videos(videos, sp_size): | |
if videos.size(1) > 121: | |
videos = videos[:, :121] | |
t = videos.size(1) | |
if t <= 4 * sp_size: | |
print(f"Cut input video size: {videos.size()}") | |
padding = [videos[:, -1].unsqueeze(1)] * (4 * sp_size - t + 1) | |
padding = torch.cat(padding, dim=1) | |
videos = torch.cat([videos, padding], dim=1) | |
return videos | |
if (t - 1) % (4 * sp_size) == 0: | |
return videos | |
else: | |
padding = [videos[:, -1].unsqueeze(1)] * ( | |
4 * sp_size - ((t - 1) % (4 * sp_size)) | |
) | |
padding = torch.cat(padding, dim=1) | |
videos = torch.cat([videos, padding], dim=1) | |
assert (videos.size(1) - 1) % (4 * sp_size) == 0 | |
return videos | |
# classifier-free guidance | |
runner.config.diffusion.cfg.scale = cfg_scale | |
runner.config.diffusion.cfg.rescale = cfg_rescale | |
# sampling steps | |
runner.config.diffusion.timesteps.sampling.steps = sample_steps | |
runner.configure_diffusion() | |
# set random seed | |
seed = seed % (2**32) # avoid over range | |
set_seed(seed, same_across_ranks=True) | |
os.makedirs('output/', exist_ok=True) | |
# get test prompts | |
original_videos = [os.path.basename(video_path)] | |
# divide the prompts into different groups | |
original_videos_group = original_videos | |
# store prompt mapping | |
original_videos_local = original_videos_group | |
original_videos_local = partition_by_size(original_videos_local, batch_size) | |
# pre-extract the text embeddings | |
positive_prompts_embeds = _extract_text_embeds() | |
video_transform = Compose( | |
[ | |
NaResize( | |
resolution=( | |
res_h * res_w | |
) | |
** 0.5, | |
mode="area", | |
# Upsample image, model only trained for high res. | |
downsample_only=False, | |
), | |
Lambda(lambda x: torch.clamp(x, 0.0, 1.0)), | |
DivisibleCrop((16, 16)), | |
Normalize(0.5, 0.5), | |
Rearrange("t c h w -> c t h w"), | |
] | |
) | |
# generation loop | |
for videos, text_embeds in tqdm(zip(original_videos_local, positive_prompts_embeds)): | |
# read condition latents | |
cond_latents = [] | |
for video in videos: | |
media_type, _ = mimetypes.guess_type(video_path) | |
is_image = media_type and media_type.startswith("image") | |
is_video = media_type and media_type.startswith("video") | |
if is_video: | |
video = ( | |
read_video( | |
video_path, output_format="TCHW" | |
)[0] | |
/ 255.0 | |
) | |
if video.size(0) > 121: | |
video = video[:121] | |
print(f"Read video size: {video.size()}") | |
output_dir = 'output/' + str(uuid.uuid4()) + '.mp4' | |
else: | |
img = Image.open(video_path).convert("RGB") | |
img_tensor = T.ToTensor()(img).unsqueeze(0) # (1, C, H, W) | |
video = img_tensor.permute(0, 1, 2, 3) # (T=1, C, H, W) | |
print(f"Read Image size: {video.size()}") | |
output_dir = 'output/' + str(uuid.uuid4()) + '.png' | |
cond_latents.append(video_transform(video.to(torch.device("cuda")))) | |
ori_lengths = [video.size(1) for video in cond_latents] | |
input_videos = cond_latents | |
if is_video: | |
cond_latents = [cut_videos(video, sp_size) for video in cond_latents] | |
print(f"Encoding videos: {list(map(lambda x: x.size(), cond_latents))}") | |
cond_latents = runner.vae_encode(cond_latents) | |
for i, emb in enumerate(text_embeds["texts_pos"]): | |
text_embeds["texts_pos"][i] = emb.to(torch.device("cuda")) | |
for i, emb in enumerate(text_embeds["texts_neg"]): | |
text_embeds["texts_neg"][i] = emb.to(torch.device("cuda")) | |
samples = generation_step(runner, text_embeds, cond_latents=cond_latents) | |
del cond_latents | |
# dump samples to the output directory | |
for path, input, sample, ori_length in zip( | |
videos, input_videos, samples, ori_lengths | |
): | |
if ori_length < sample.shape[0]: | |
sample = sample[:ori_length] | |
# color fix | |
input = ( | |
rearrange(input[:, None], "c t h w -> t c h w") | |
if input.ndim == 3 | |
else rearrange(input, "c t h w -> t c h w") | |
) | |
if use_colorfix: | |
sample = wavelet_reconstruction( | |
sample.to("cpu"), input[: sample.size(0)].to("cpu") | |
) | |
else: | |
sample = sample.to("cpu") | |
sample = ( | |
rearrange(sample[:, None], "t c h w -> t h w c") | |
if sample.ndim == 3 | |
else rearrange(sample, "t c h w -> t h w c") | |
) | |
sample = sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round() | |
sample = sample.to(torch.uint8).numpy() | |
if is_image: | |
mediapy.write_image(output_dir, sample[0]) | |
else: | |
mediapy.write_video( | |
output_dir, sample, fps=fps_out | |
) | |
gc.collect() | |
torch.cuda.empty_cache() | |
if is_image: | |
return output_dir, None, output_dir | |
else: | |
return None, output_dir, output_dir | |
with gr.Blocks(title="SeedVR2: One-Step Video Restoration via Diffusion Adversarial Post-Training") as demo: | |
# Top logo and title | |
gr.HTML(""" | |
<div style='text-align:center; margin-bottom: 10px;'> | |
<img src='assets/seedvr_logo.png' style='height:40px;' alt='SeedVR logo'/> | |
</div> | |
<p><b>Official Gradio demo</b> for | |
<a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'> | |
<b>SeedVR2: One-Step Video Restoration via Diffusion Adversarial Post-Training</b></a>.<br> | |
🔥 <b>SeedVR2</b> is a one-step image and video restoration algorithm for real-world and AIGC content. | |
</p> | |
""") | |
# Interface | |
with gr.Row(): | |
input_video = gr.File(label="Upload image or video", type="filepath") | |
seed = gr.Number(label="Seeds", value=666) | |
fps = gr.Number(label="fps", value=24) | |
with gr.Row(): | |
output_video = gr.Video(label="Output_Video") | |
output_image = gr.Image(label="Output_Image") | |
download_link = gr.File(label="Download the output") | |
run_button = gr.Button("Run") | |
run_button.click(fn=generation_loop, inputs=[input_video, seed, fps], outputs=[output_image, output_video, download_link]) | |
# Examples | |
gr.Examples( | |
examples=[ | |
["01.mp4", 4, 24], | |
["02.mp4", 4, 24], | |
["03.mp4", 4, 24], | |
], | |
inputs=[input_video, seed, fps] | |
) | |
# Article/Footer | |
gr.HTML(""" | |
<hr> | |
<p>If you find SeedVR helpful, please ⭐ the | |
<a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'>GitHub repository</a>:</p> | |
<a href="https://github.com/ByteDance-Seed/SeedVR" target="_blank"> | |
<img src="https://img.shields.io/github/stars/ByteDance-Seed/SeedVR?style=social" alt="GitHub Stars"> | |
</a> | |
<h4>Notice</h4> | |
<p>This demo supports up to <b>720p and 121 frames for videos or 2k images</b>. | |
For other use cases (image restoration beyond 2K, video resolutions beyond 720p, etc), check the <a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'>GitHub repo</a>.</p> | |
<h4>Limitations</h4> | |
<p>May fail on heavy degradations or small-motion AIGC clips, causing oversharpening or poor restoration.</p> | |
<h4>Citation</h4> | |
<pre style="font-size: 12px;"> | |
@article{wang2025seedvr2, | |
title={SeedVR2: One-Step Video Restoration via Diffusion Adversarial Post-Training}, | |
author={Wang, Jianyi and Lin, Shanchuan and Lin, Zhijie and Ren, Yuxi and Wei, Meng and Yue, Zongsheng and Zhou, Shangchen and Chen, Hao and Zhao, Yang and Yang, Ceyuan and Xiao, Xuefeng and Loy, Chen Change and Jiang, Lu}, | |
booktitle={arXiv preprint arXiv:2506.05301}, | |
year={2025} | |
} | |
@inproceedings{wang2025seedvr, | |
title={SeedVR: Seeding Infinity in Diffusion Transformer Towards Generic Video Restoration}, | |
author={Wang, Jianyi and Lin, Zhijie and Wei, Meng and Zhao, Yang and Yang, Ceyuan and Loy, Chen Change and Jiang, Lu}, | |
booktitle={CVPR}, | |
year={2025} | |
} | |
</pre> | |
<h4>License</h4> | |
<p>Licensed under the | |
<a href="http://www.apache.org/licenses/LICENSE-2.0" target="_blank">Apache 2.0 License</a>.</p> | |
<h4>Contact</h4> | |
<p>Email: <b>[email protected]</b></p> | |
<p> | |
<a href="https://twitter.com/Iceclearwjy"> | |
<img src="https://img.shields.io/twitter/follow/Iceclearwjy?label=%40Iceclearwjy&style=social" alt="Twitter Follow"> | |
</a> | |
<a href="https://github.com/IceClear"> | |
<img src="https://img.shields.io/github/followers/IceClear?style=social" alt="GitHub Follow"> | |
</a> | |
</p> | |
<p style="text-align:center;"> | |
<img src="https://visitor-badge.laobi.icu/badge?page_id=ByteDance-Seed/SeedVR" alt="visitors"> | |
</p> | |
""") | |
demo.queue() | |
demo.launch() |