File size: 8,052 Bytes
09b1b8e
f85ca57
be6b030
b8cb97f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be6b030
 
 
 
ef829fc
 
 
 
 
 
 
 
 
 
 
 
 
8ab9604
56a58f9
 
 
 
 
 
 
 
 
 
 
 
 
ef829fc
 
 
 
 
 
 
 
8ab9604
b8cb97f
80cf231
56a58f9
be6b030
746b66d
71cd5d1
746b66d
71cd5d1
 
 
 
746b66d
 
 
 
 
 
71cd5d1
 
746b66d
 
 
 
71cd5d1
8ab9604
 
71cd5d1
e3b4db8
56a58f9
8ab9604
 
 
 
 
71cd5d1
 
42f2c22
 
1fd3071
8ab9604
42f2c22
 
 
 
 
 
71cd5d1
397e9af
42f2c22
397e9af
42f2c22
71cd5d1
 
42f2c22
8ab9604
71cd5d1
42f2c22
71cd5d1
 
42f2c22
7c96174
71cd5d1
7af19da
71cd5d1
636f837
5f7cba6
636f837
 
42f2c22
71cd5d1
8ab9604
636f837
 
 
 
5f7cba6
 
636f837
 
71cd5d1
 
 
 
 
 
 
 
 
397e9af
71cd5d1
 
 
 
 
 
 
 
 
 
 
 
 
397e9af
5f7cba6
ae8872e
397e9af
be6b030
397e9af
 
5fad6fa
71cd5d1
5fad6fa
71cd5d1
 
ea7dfbd
71cd5d1
 
 
5fad6fa
71cd5d1
f4c2790
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
import sys
import subprocess
import importlib.util

# --- ETAPA 0: Instalação Final do flash-attn ---

# Verifica se o flash_attn já está instalado. Se não, instala.
package_name = 'flash_attn'
spec = importlib.util.find_spec(package_name)
if spec is None:
    print(f"Instalando o pacote que faltava: {package_name}. Isso pode levar um minuto...")
    # Usamos o python executável do ambiente atual para instalar o pacote
    python_executable = sys.executable
    subprocess.run(
        [
            python_executable, "-m", "pip", "install", 
            "flash_attn==2.5.9.post1", 
            "--no-build-isolation"
        ],
        check=True
    )
    print(f"✅ {package_name} instalado com sucesso.")
else:
    print(f"✅ Pacote {package_name} já está instalado.")


# A partir daqui, o ambiente está 100% pronto.
# ---------------------------------------------------------------------

import spaces
from pathlib import Path
from urllib.parse import urlparse
import torch
from torch.hub import download_url_to_file
import mediapy
from einops import rearrange
from omegaconf import OmegaConf
import datetime
import gc
from PIL import Image
import gradio as gr
import uuid
import mimetypes
import torchvision.transforms as T
from torchvision.transforms import Compose, Lambda, Normalize
from torchvision.io.video import read_video

# --- ETAPA 1: Clonar o Repositório e Mudar para o Diretório ---
repo_name = "SeedVR"
if not os.path.exists(repo_name):
    print(f"Clonando o repositório {repo_name} do GitHub...")
    subprocess.run(f"git clone https://github.com/ByteDance-Seed/{repo_name}.git", shell=True, check=True)

# Garante que estamos no diretório certo
if not os.getcwd().endswith(repo_name):
    os.chdir(repo_name)

sys.path.insert(0, os.path.abspath('.'))

# Importações do projeto SeedVR (só podem ser feitas após o chdir)
from data.image.transforms.divisible_crop import DivisibleCrop
from data.image.transforms.na_resize import NaResize
from data.video.transforms.rearrange import Rearrange
from common.config import load_config
from common.distributed import init_torch
from common.seed import set_seed
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
from common.distributed.ops import sync_data

print("Ambiente Conda carregado e verificado. Iniciando a aplicação...")

# --- ETAPA 2: Baixar os Modelos Pré-treinados ---
print("Baixando modelos pré-treinados...")

def load_file_from_url(url, model_dir='.', progress=True, file_name=None):
    os.makedirs(model_dir, exist_ok=True)
    if not file_name:
        parts = urlparse(url)
        file_name = os.path.basename(parts.path)
    cached_file = os.path.join(model_dir, file_name)
    if not os.path.exists(cached_file):
        print(f'Baixando: "{url}" para {cached_file}\n')
        download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
    return cached_file

pretrain_model_url = {
    'vae': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth',
    'dit': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth',
    'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt',
    'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt',
}

Path('./ckpts').mkdir(exist_ok=True)
for key, url in pretrain_model_url.items():
    model_dir = './ckpts' if key in ['vae', 'dit'] else '.'
    load_file_from_url(url=url, model_dir=model_dir)

# --- ETAPA 3: Executar a Aplicação Principal ---
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "12355"
os.environ["RANK"] = str(0)
os.environ["WORLD_SIZE"] = str(1)

def configure_runner():
    config = load_config('configs_3b/main.yaml')
    runner = VideoDiffusionInfer(config)
    OmegaConf.set_readonly(runner.config, False)
    init_torch(cudnn_benchmark=False, timeout=datetime.timedelta(seconds=3600))
    runner.configure_dit_model(device="cuda", checkpoint='ckpts/seedvr2_ema_3b.pth')
    runner.configure_vae_model()
    if hasattr(runner.vae, "set_memory_limit"):
        runner.vae.set_memory_limit(**runner.config.vae.memory_limit)
    return runner

def generation_step(runner, text_embeds_dict, cond_latents):
    def _move_to_cuda(x): return [i.to("cuda") for i in x]
    noises, aug_noises = [torch.randn_like(l) for l in cond_latents], [torch.randn_like(l) for l in cond_latents]
    noises, aug_noises, cond_latents = sync_data((noises, aug_noises, cond_latents), 0)
    noises, aug_noises, cond_latents = map(_move_to_cuda, (noises, aug_noises, cond_latents))
    def _add_noise(x, aug_noise):
        t = torch.tensor([100.0], device="cuda")
        shape = torch.tensor(x.shape[1:], device="cuda")[None]
        t = runner.timestep_transform(t, shape)
        return runner.schedule.forward(x, aug_noise, t)
    conditions = [runner.get_condition(n, task="sr", latent_blur=_add_noise(l, an)) for n, an, l in zip(noises, aug_noises, cond_latents)]
    with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
        video_tensors = runner.inference(noises=noises, conditions=conditions, **text_embeds_dict)
    return [rearrange(v, "c t h w -> t c h w") for v in video_tensors]

@spaces.GPU
def generation_loop(video_path, seed=666, fps_out=24):
    if video_path is None: return None, None, None
    runner = configure_runner()
    text_embeds = {
        "texts_pos": [torch.load('pos_emb.pt', weights_only=True).to("cuda")],
        "texts_neg": [torch.load('neg_emb.pt', weights_only=True).to("cuda")]
    }
    runner.configure_diffusion()
    set_seed(int(seed))
    os.makedirs("output", exist_ok=True)
    res_h, res_w = 1280, 720
    transform = Compose([
        NaResize(resolution=(res_h * res_w)**0.5, mode="area", downsample_only=False),
        Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
        DivisibleCrop((16, 16)),
        Normalize(0.5, 0.5),
        Rearrange("t c h w -> c t h w")
    ])
    media_type, _ = mimetypes.guess_type(video_path)
    is_video = media_type and media_type.startswith("video")
    if is_video:
        video, _, _ = read_video(video_path, output_format="TCHW")
        video = video[:121] / 255.0
        output_path = os.path.join("output", f"{uuid.uuid4()}.mp4")
    else:
        video = T.ToTensor()(Image.open(video_path).convert("RGB")).unsqueeze(0)
        output_path = os.path.join("output", f"{uuid.uuid4()}.png")
    cond_latents = [transform(video.to("cuda"))]
    ori_length = cond_latents[0].size(2)
    cond_latents = runner.vae_encode(cond_latents)
    samples = generation_step(runner, text_embeds, cond_latents)
    sample = samples[0][:ori_length].cpu()
    sample = rearrange(sample, "t c h w -> t h w c").clip(-1, 1).add(1).mul(127.5).byte().numpy()
    if is_video:
        mediapy.write_video(output_path, sample, fps=fps_out)
        return None, output_path, output_path
    else:
        mediapy.write_image(output_path, sample[0])
        return output_path, None, output_path

with gr.Blocks(title="SeedVR") as demo:
    gr.HTML(f"""
        <p><b>Demonstração oficial do Gradio</b> para
        <a href='https://github.com/ByteDance-Seed/SeedVR' target='-blank'>
        <b>SeedVR2: One-Step Video Restoration via Diffusion Adversarial Post-Training</b></a>.<br>
        🔥 <b>SeedVR2</b> é um algoritmo de restauração de imagem e vídeo em um passo para conteúdo do mundo real e AIGC.
        </p>
    """)
    with gr.Row():
        input_file = gr.File(label="Carregar Imagem ou Vídeo")
        with gr.Column():
            seed = gr.Number(label="Seed", value=42)
            fps = gr.Number(label="FPS de Saída", value=24)
    run_button = gr.Button("Executar")
    output_image = gr.Image(label="Imagem de Saída")
    output_video = gr.Video(label="Vídeo de Saída")
    download_link = gr.File(label="Baixar Resultado")
    run_button.click(fn=generation_loop, inputs=[input_file, seed, fps], outputs=[output_image, output_video, download_link])

demo.queue().launch(share=True)