Spaces:
Paused
Paused
| from PIL import Image, ExifTags | |
| import numpy as np | |
| import torch | |
| from torch import Tensor | |
| from einops import rearrange | |
| import uuid | |
| import os | |
| from src.flux.modules.layers import ( | |
| SingleStreamBlockProcessor, | |
| DoubleStreamBlockProcessor, | |
| SingleStreamBlockLoraProcessor, | |
| DoubleStreamBlockLoraProcessor, | |
| IPDoubleStreamBlockProcessor, | |
| ImageProjModel, | |
| ) | |
| from src.flux.sampling import denoise, denoise_controlnet, get_noise, get_schedule, prepare, unpack | |
| from src.flux.util import ( | |
| load_ae, | |
| load_clip, | |
| load_flow_model, | |
| load_t5, | |
| load_controlnet, | |
| load_flow_model_quintized, | |
| Annotator, | |
| get_lora_rank, | |
| load_checkpoint | |
| ) | |
| from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor | |
| class XFluxPipeline: | |
| def __init__(self, model_type, device, offload: bool = False): | |
| self.device = torch.device(device) | |
| self.offload = offload | |
| self.model_type = model_type | |
| self.clip = load_clip(self.device) | |
| self.t5 = load_t5(self.device, max_length=512) | |
| self.ae = load_ae(model_type, device="cpu" if offload else self.device) | |
| if "fp8" in model_type: | |
| self.model = load_flow_model_quintized(model_type, device="cpu" if offload else self.device) | |
| else: | |
| self.model = load_flow_model(model_type, device="cpu" if offload else self.device) | |
| self.image_encoder_path = "openai/clip-vit-large-patch14" | |
| self.hf_lora_collection = "XLabs-AI/flux-lora-collection" | |
| self.lora_types_to_names = { | |
| "realism": "lora.safetensors", | |
| } | |
| self.controlnet_loaded = False | |
| self.ip_loaded = False | |
| self.spatial_condition = False | |
| self.share_position_embedding = False | |
| self.use_share_weight_referencenet = False | |
| self.single_block_refnet = False | |
| self.double_block_refnet = False | |
| def set_ip(self, local_path: str = None, repo_id = None, name: str = None): | |
| self.model.to(self.device) | |
| # unpack checkpoint | |
| checkpoint = load_checkpoint(local_path, repo_id, name) | |
| prefix = "double_blocks." | |
| blocks = {} | |
| proj = {} | |
| for key, value in checkpoint.items(): | |
| if key.startswith(prefix): | |
| blocks[key[len(prefix):].replace('.processor.', '.')] = value | |
| if key.startswith("ip_adapter_proj_model"): | |
| proj[key[len("ip_adapter_proj_model."):]] = value | |
| # load image encoder | |
| self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to( | |
| self.device, dtype=torch.float16 | |
| ) | |
| self.clip_image_processor = CLIPImageProcessor() | |
| # setup image embedding projection model | |
| self.improj = ImageProjModel(4096, 768, 4) | |
| self.improj.load_state_dict(proj) | |
| self.improj = self.improj.to(self.device, dtype=torch.bfloat16) | |
| ip_attn_procs = {} | |
| for name, _ in self.model.attn_processors.items(): | |
| ip_state_dict = {} | |
| for k in checkpoint.keys(): | |
| if name in k: | |
| ip_state_dict[k.replace(f'{name}.', '')] = checkpoint[k] | |
| if ip_state_dict: | |
| ip_attn_procs[name] = IPDoubleStreamBlockProcessor(4096, 3072) | |
| ip_attn_procs[name].load_state_dict(ip_state_dict) | |
| ip_attn_procs[name].to(self.device, dtype=torch.bfloat16) | |
| else: | |
| ip_attn_procs[name] = self.model.attn_processors[name] | |
| self.model.set_attn_processor(ip_attn_procs) | |
| self.ip_loaded = True | |
| def set_lora(self, local_path: str = None, repo_id: str = None, | |
| name: str = None, lora_weight: int = 0.7): | |
| checkpoint = load_checkpoint(local_path, repo_id, name) | |
| self.update_model_with_lora(checkpoint, lora_weight) | |
| def set_lora_from_collection(self, lora_type: str = "realism", lora_weight: int = 0.7): | |
| checkpoint = load_checkpoint( | |
| None, self.hf_lora_collection, self.lora_types_to_names[lora_type] | |
| ) | |
| self.update_model_with_lora(checkpoint, lora_weight) | |
| def update_model_with_lora(self, checkpoint, lora_weight): | |
| rank = get_lora_rank(checkpoint) | |
| lora_attn_procs = {} | |
| for name, _ in self.model.attn_processors.items(): | |
| lora_state_dict = {} | |
| for k in checkpoint.keys(): | |
| if name in k: | |
| lora_state_dict[k[len(name) + 1:]] = checkpoint[k] * lora_weight | |
| if len(lora_state_dict): | |
| if name.startswith("single_blocks"): | |
| lora_attn_procs[name] = SingleStreamBlockLoraProcessor(dim=3072, rank=rank) | |
| else: | |
| lora_attn_procs[name] = DoubleStreamBlockLoraProcessor(dim=3072, rank=rank) | |
| lora_attn_procs[name].load_state_dict(lora_state_dict) | |
| lora_attn_procs[name].to(self.device) | |
| else: | |
| if name.startswith("single_blocks"): | |
| lora_attn_procs[name] = SingleStreamBlockProcessor() | |
| else: | |
| lora_attn_procs[name] = DoubleStreamBlockProcessor() | |
| self.model.set_attn_processor(lora_attn_procs) | |
| def set_controlnet(self, control_type: str, local_path: str = None, repo_id: str = None, name: str = None): | |
| self.model.to(self.device) | |
| self.controlnet = load_controlnet(self.model_type, self.device).to(torch.bfloat16) | |
| checkpoint = load_checkpoint(local_path, repo_id, name) | |
| self.controlnet.load_state_dict(checkpoint, strict=False) | |
| self.annotator = Annotator(control_type, self.device) | |
| self.controlnet_loaded = True | |
| self.control_type = control_type | |
| def get_image_proj( | |
| self, | |
| image_prompt: Tensor, | |
| ): | |
| # encode image-prompt embeds | |
| image_prompt = self.clip_image_processor( | |
| images=image_prompt, | |
| return_tensors="pt" | |
| ).pixel_values | |
| image_prompt = image_prompt.to(self.image_encoder.device) | |
| image_prompt_embeds = self.image_encoder( | |
| image_prompt | |
| ).image_embeds.to( | |
| device=self.device, dtype=torch.bfloat16, | |
| ) | |
| # encode image | |
| image_proj = self.improj(image_prompt_embeds) | |
| return image_proj | |
| def __call__(self, | |
| prompt: str, | |
| image_prompt: Image = None, | |
| source_image: Tensor = None, | |
| controlnet_image: Image = None, | |
| width: int = 512, | |
| height: int = 512, | |
| guidance: float = 4, | |
| num_steps: int = 50, | |
| seed: int = 123456789, | |
| true_gs: float = 3.5, # 3 | |
| control_weight: float = 0.9, | |
| ip_scale: float = 1.0, | |
| neg_ip_scale: float = 1.0, | |
| neg_prompt: str = '', | |
| neg_image_prompt: Image = None, | |
| timestep_to_start_cfg: int = 1, # 0 | |
| ): | |
| width = 16 * (width // 16) | |
| height = 16 * (height // 16) | |
| image_proj = None | |
| neg_image_proj = None | |
| if not (image_prompt is None and neg_image_prompt is None) : | |
| assert self.ip_loaded, 'You must setup IP-Adapter to add image prompt as input' | |
| if image_prompt is None: | |
| image_prompt = np.zeros((width, height, 3), dtype=np.uint8) | |
| if neg_image_prompt is None: | |
| neg_image_prompt = np.zeros((width, height, 3), dtype=np.uint8) | |
| image_proj = self.get_image_proj(image_prompt) | |
| neg_image_proj = self.get_image_proj(neg_image_prompt) | |
| if self.controlnet_loaded: | |
| controlnet_image = self.annotator(controlnet_image, width, height) | |
| controlnet_image = torch.from_numpy((np.array(controlnet_image) / 127.5) - 1) | |
| controlnet_image = controlnet_image.permute( | |
| 2, 0, 1).unsqueeze(0).to(torch.bfloat16).to(self.device) | |
| return self.forward( | |
| prompt, | |
| width, | |
| height, | |
| guidance, | |
| num_steps, | |
| seed, | |
| controlnet_image, | |
| timestep_to_start_cfg=timestep_to_start_cfg, | |
| true_gs=true_gs, | |
| control_weight=control_weight, | |
| neg_prompt=neg_prompt, | |
| image_proj=image_proj, | |
| neg_image_proj=neg_image_proj, | |
| ip_scale=ip_scale, | |
| neg_ip_scale=neg_ip_scale, | |
| spatial_condition=self.spatial_condition, | |
| source_image=source_image, | |
| share_position_embedding=self.share_position_embedding | |
| ) | |
| def gradio_generate(self, prompt, image_prompt, controlnet_image, width, height, guidance, | |
| num_steps, seed, true_gs, ip_scale, neg_ip_scale, neg_prompt, | |
| neg_image_prompt, timestep_to_start_cfg, control_type, control_weight, | |
| lora_weight, local_path, lora_local_path, ip_local_path): | |
| if controlnet_image is not None: | |
| controlnet_image = Image.fromarray(controlnet_image) | |
| if ((self.controlnet_loaded and control_type != self.control_type) | |
| or not self.controlnet_loaded): | |
| if local_path is not None: | |
| self.set_controlnet(control_type, local_path=local_path) | |
| else: | |
| self.set_controlnet(control_type, local_path=None, | |
| repo_id=f"xlabs-ai/flux-controlnet-{control_type}-v3", | |
| name=f"flux-{control_type}-controlnet-v3.safetensors") | |
| if lora_local_path is not None: | |
| self.set_lora(local_path=lora_local_path, lora_weight=lora_weight) | |
| if image_prompt is not None: | |
| image_prompt = Image.fromarray(image_prompt) | |
| if neg_image_prompt is not None: | |
| neg_image_prompt = Image.fromarray(neg_image_prompt) | |
| if not self.ip_loaded: | |
| if ip_local_path is not None: | |
| self.set_ip(local_path=ip_local_path) | |
| else: | |
| self.set_ip(repo_id="xlabs-ai/flux-ip-adapter", | |
| name="flux-ip-adapter.safetensors") | |
| seed = int(seed) | |
| if seed == -1: | |
| seed = torch.Generator(device="cpu").seed() | |
| img = self(prompt, image_prompt, controlnet_image, width, height, guidance, | |
| num_steps, seed, true_gs, control_weight, ip_scale, neg_ip_scale, neg_prompt, | |
| neg_image_prompt, timestep_to_start_cfg) | |
| filename = f"output/gradio/{uuid.uuid4()}.jpg" | |
| os.makedirs(os.path.dirname(filename), exist_ok=True) | |
| exif_data = Image.Exif() | |
| exif_data[ExifTags.Base.Make] = "XLabs AI" | |
| exif_data[ExifTags.Base.Model] = self.model_type | |
| img.save(filename, format="jpeg", exif=exif_data, quality=95, subsampling=0) | |
| return img, filename | |
| def forward( | |
| self, | |
| prompt, | |
| width, | |
| height, | |
| guidance, | |
| num_steps, | |
| seed, | |
| controlnet_image = None, | |
| timestep_to_start_cfg = 0, | |
| true_gs = 3.5, | |
| control_weight = 0.9, | |
| neg_prompt="", | |
| image_proj=None, | |
| neg_image_proj=None, | |
| ip_scale=1.0, | |
| neg_ip_scale=1.0, | |
| spatial_condition=True, | |
| source_image=None, | |
| share_position_embedding=False | |
| ): | |
| x = get_noise( | |
| 1, height, width, device=self.device, | |
| dtype=torch.bfloat16, seed=seed | |
| ) | |
| timesteps = get_schedule( | |
| num_steps, | |
| (width // 8) * (height // 8) // (16 * 16), | |
| shift=True, | |
| ) | |
| torch.manual_seed(seed) | |
| with torch.no_grad(): | |
| if self.offload: | |
| self.t5, self.clip = self.t5.to(self.device), self.clip.to(self.device) | |
| # print("x noise shape:", x.shape) | |
| inp_cond = prepare(t5=self.t5, clip=self.clip, img=x, prompt=prompt, use_spatial_condition=spatial_condition, share_position_embedding=share_position_embedding, use_share_weight_referencenet=self.use_share_weight_referencenet) | |
| # print("input img noise shape:", inp_cond['img'].shape) | |
| neg_inp_cond = prepare(t5=self.t5, clip=self.clip, img=x, prompt=neg_prompt, use_spatial_condition=spatial_condition, share_position_embedding=share_position_embedding, use_share_weight_referencenet=self.use_share_weight_referencenet) | |
| if spatial_condition or self.use_share_weight_referencenet: | |
| # TODO here: | |
| source_image = self.ae.encode(source_image.to(self.device).to(torch.float32)) | |
| # print("ae source image shape:", source_image.shape) | |
| source_image = rearrange(source_image, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2).to(inp_cond['img'].dtype) | |
| # print("rearrange ae source image shape:", source_image.shape) | |
| if self.offload: | |
| self.offload_model_to_cpu(self.t5, self.clip) | |
| self.model = self.model.to(self.device) | |
| if self.controlnet_loaded: | |
| x = denoise_controlnet( | |
| self.model, | |
| img=inp_cond['img'], | |
| img_ids=inp_cond['img_ids'], | |
| txt=inp_cond['txt'], | |
| txt_ids=inp_cond['txt_ids'], | |
| vec=inp_cond['vec'], | |
| controlnet=self.controlnet, | |
| timesteps=timesteps, | |
| guidance=guidance, | |
| controlnet_cond=controlnet_image, | |
| timestep_to_start_cfg=timestep_to_start_cfg, | |
| neg_txt=neg_inp_cond['txt'], | |
| neg_txt_ids=neg_inp_cond['txt_ids'], | |
| neg_vec=neg_inp_cond['vec'], | |
| true_gs=true_gs, | |
| controlnet_gs=control_weight, | |
| image_proj=image_proj, | |
| neg_image_proj=neg_image_proj, | |
| ip_scale=ip_scale, | |
| neg_ip_scale=neg_ip_scale, | |
| ) | |
| else: | |
| x = denoise( | |
| self.model, | |
| img=inp_cond['img'], | |
| img_ids=inp_cond['img_ids'], | |
| txt=inp_cond['txt'], | |
| txt_ids=inp_cond['txt_ids'], | |
| vec=inp_cond['vec'], | |
| timesteps=timesteps, | |
| guidance=guidance, | |
| timestep_to_start_cfg=timestep_to_start_cfg, | |
| neg_txt=neg_inp_cond['txt'], | |
| neg_txt_ids=neg_inp_cond['txt_ids'], | |
| neg_vec=neg_inp_cond['vec'], | |
| true_gs=true_gs, | |
| image_proj=image_proj, | |
| neg_image_proj=neg_image_proj, | |
| ip_scale=ip_scale, | |
| neg_ip_scale=neg_ip_scale, | |
| source_image=source_image, # spatial_condition source image | |
| use_share_weight_referencenet=self.use_share_weight_referencenet, | |
| single_img_ids=inp_cond['single_img_ids'] if self.use_share_weight_referencenet else None, | |
| neg_single_img_ids=neg_inp_cond['single_img_ids'] if self.use_share_weight_referencenet else None, | |
| single_block_refnet=self.single_block_refnet, | |
| double_block_refnet=self.double_block_refnet, | |
| ) | |
| if self.offload: | |
| self.offload_model_to_cpu(self.model) | |
| self.ae.decoder.to(x.device) | |
| x = unpack(x.float(), height, width) | |
| x = self.ae.decode(x) | |
| self.offload_model_to_cpu(self.ae.decoder) | |
| x1 = x.clamp(-1, 1) | |
| x1 = rearrange(x1[-1], "c h w -> h w c") | |
| output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy()) | |
| return output_img | |
| def offload_model_to_cpu(self, *models): | |
| if not self.offload: return | |
| for model in models: | |
| model.cpu() | |
| torch.cuda.empty_cache() | |
| class XFluxSampler(XFluxPipeline): | |
| def __init__(self, device, controlnet_loaded=False,ip_loaded=False, spatial_condition=False, offload=False, clip_image_processor=None, image_encoder=None, improj=None, share_position_embedding=False, use_share_weight_referencenet=False, single_block_refnet=False, double_block_refnet=False): | |
| super().__init__(model_type="flux-dev", device=device, offload=False) | |
| self.device = device | |
| self.controlnet_loaded = controlnet_loaded | |
| self.ip_loaded = ip_loaded | |
| self.offload = offload | |
| self.clip_image_processor = clip_image_processor | |
| self.image_encoder = image_encoder | |
| self.improj = improj | |
| self.spatial_condition = spatial_condition | |
| self.share_position_embedding = share_position_embedding | |
| self.use_share_weight_referencenet = use_share_weight_referencenet | |
| self.single_block_refnet = single_block_refnet | |
| self.double_block_refnet = double_block_refnet |