File size: 1,977 Bytes
15ce174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from estnltk import Text
from estnltk.taggers import (
    VabamorfTagger,
    WhiteSpaceTokensTagger,
    PretokenizedTextCompoundTokensTagger,
    TokensTagger,
)


class Lemmatizer:

    def __init__(
        self,
        disambiguate: bool = False,
        use_context: bool = False,
        proper_name: bool = True,
        guess: bool = False,
        separate_punctuation: bool = False,
    ):
        self.disambiguate = disambiguate
        self.use_context = use_context
        self.proper_name = proper_name
        self.guess = guess
        self.tagger = VabamorfTagger(
            compound=False,
            disambiguate=self.disambiguate,
            guess=self.guess,
            slang_lex=False,
            phonetic=False,
            use_postanalysis=True,
            use_reorderer=True,
            propername=self.proper_name,
            predisambiguate=self.use_context,
            postdisambiguate=self.use_context,
        )
        self.separate_punctuation = separate_punctuation
        if self.separate_punctuation:
            self.tokens_tagger = TokensTagger()
        else:
            self.tokens_tagger = WhiteSpaceTokensTagger()
        self.compound_token_tagger = PretokenizedTextCompoundTokensTagger()

    def __call__(self, text: str, return_tokens: bool = False) -> list[list[str]]:
        text = Text(text)
        self.tokens_tagger.tag(text)
        self.compound_token_tagger.tag(text)
        text.tag_layer(self.tagger.input_layers)
        self.tagger.tag(text)
        if return_tokens:
            return list(text["morph_analysis"].lemma), list(
                text["morph_analysis"].normalized_text
            )
        return list(text["morph_analysis"].lemma)


if __name__ == "__main__":
    sample = "India köök: riisi-dhal, köögivilju ja roti-papad?"
    lemmatizer = Lemmatizer(
        proper_name=True, use_context=True, disambiguate=True, separate_punctuation=True
    )
    print(lemmatizer(sample))