Spaces:
Runtime error
Runtime error
Al John Lexter Lozano
commited on
Commit
·
9a34627
1
Parent(s):
ead2dcb
add DL model, fixed examples, add visual output
Browse files- app.py +85 -14
- demo_mixed.txt +5 -0
app.py
CHANGED
|
@@ -1,20 +1,31 @@
|
|
|
|
|
| 1 |
from fastapi import File
|
| 2 |
import gradio as gr
|
| 3 |
from gib_detect_module import detect
|
| 4 |
import csv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
def greet(name):
|
| 7 |
return "Hello " + name + "!!"
|
| 8 |
|
| 9 |
def detect_gibberish(line,f):
|
| 10 |
-
|
| 11 |
if line:
|
| 12 |
if detect(line):
|
| 13 |
-
return "Valid!!!!", None
|
| 14 |
else:
|
| 15 |
-
return "Bollocks Giberrish",None
|
| 16 |
elif f:
|
| 17 |
-
return None, annotate_csv(f)
|
|
|
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
def annotate_csv(f):
|
|
@@ -25,22 +36,82 @@ def annotate_csv(f):
|
|
| 25 |
cwriter = csv.writer(csvout, delimiter=',',
|
| 26 |
quotechar='"', quoting=csv.QUOTE_MINIMAL)
|
| 27 |
for row in creader:
|
| 28 |
-
print(row)
|
| 29 |
row.append(str(detect(row[0])))
|
| 30 |
-
cwriter.writerow(row)
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
return "out.csv"
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
inputFile=gr.inputs.File(file_count="single", type="file", label="File to Annotate", optional=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
outputFile=gr.outputs.File( label="Annotated CSV")
|
|
|
|
|
|
|
| 37 |
|
| 38 |
examples=[
|
| 39 |
-
["quetzalcoatl","demo_blank.csv"],
|
| 40 |
-
["
|
| 41 |
-
["
|
| 42 |
-
["
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
]
|
| 44 |
-
iface = gr.Interface(fn=[detect_gibberish], inputs=["text",inputFile], outputs=["text",outputFile],examples=examples, allow_flagging='never')
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
iface.
|
|
|
|
|
|
| 1 |
+
from cProfile import label
|
| 2 |
from fastapi import File
|
| 3 |
import gradio as gr
|
| 4 |
from gib_detect_module import detect
|
| 5 |
import csv
|
| 6 |
+
import torch
|
| 7 |
+
import tensorflow as tf
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 11 |
+
DLmodel = AutoModelForSequenceClassification.from_pretrained("madhurjindal/autonlp-Gibberish-Detector-492513457", use_auth_token=True)
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained("madhurjindal/autonlp-Gibberish-Detector-492513457", use_auth_token=True)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
|
| 16 |
def greet(name):
|
| 17 |
return "Hello " + name + "!!"
|
| 18 |
|
| 19 |
def detect_gibberish(line,f):
|
|
|
|
| 20 |
if line:
|
| 21 |
if detect(line):
|
| 22 |
+
return "Valid!!!!", None,None
|
| 23 |
else:
|
| 24 |
+
return "Bollocks Giberrish",None,None
|
| 25 |
elif f:
|
| 26 |
+
return None, annotate_csv(f), None
|
| 27 |
+
|
| 28 |
+
|
| 29 |
|
| 30 |
|
| 31 |
def annotate_csv(f):
|
|
|
|
| 36 |
cwriter = csv.writer(csvout, delimiter=',',
|
| 37 |
quotechar='"', quoting=csv.QUOTE_MINIMAL)
|
| 38 |
for row in creader:
|
|
|
|
| 39 |
row.append(str(detect(row[0])))
|
| 40 |
+
cwriter.writerow(row)
|
| 41 |
+
return "out.csv"
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def annotate_csv_deep(f):
|
| 45 |
+
labels = DLmodel.config.id2label
|
| 46 |
+
with open(f.name) as csvfile:
|
| 47 |
+
creader = csv.reader(csvfile, delimiter=',', quotechar='"')
|
| 48 |
+
with open('out.csv', 'w', newline='') as csvout:
|
| 49 |
+
cwriter = csv.writer(csvout, delimiter=',',
|
| 50 |
+
quotechar='"', quoting=csv.QUOTE_MINIMAL)
|
| 51 |
+
for row in creader:
|
| 52 |
+
inputs = tokenizer(row, return_tensors="pt")
|
| 53 |
+
outputs = DLmodel(**inputs)
|
| 54 |
+
probs = outputs.logits.softmax(dim=-1).detach().cpu().flatten().numpy().tolist()
|
| 55 |
+
idx = probs.index(max(probs))
|
| 56 |
+
|
| 57 |
+
row.append(labels[idx])
|
| 58 |
+
row.append("{:.0%}".format(probs[idx]) )
|
| 59 |
+
cwriter.writerow(row)
|
| 60 |
return "out.csv"
|
| 61 |
|
| 62 |
+
|
| 63 |
+
def detect_gibberish_deep(line,f):
|
| 64 |
+
if line:
|
| 65 |
+
inputs = tokenizer(line, return_tensors="pt")
|
| 66 |
+
labels = DLmodel.config.id2label
|
| 67 |
+
outputs = DLmodel(**inputs)
|
| 68 |
+
probs = outputs.logits.softmax(dim=-1).detach().cpu().flatten().numpy().tolist()
|
| 69 |
+
output=dict(zip(labels.values(), probs))
|
| 70 |
+
readable_output=""
|
| 71 |
+
for k,v in output.items():
|
| 72 |
+
readable_output+=k+" : "+ "{:.0%}".format(v) + "\n"
|
| 73 |
+
return readable_output, None, output
|
| 74 |
+
if f:
|
| 75 |
+
return None, annotate_csv_deep(f),None
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def detect_gibberish_abstract(model, line,f):
|
| 80 |
+
if model == "Deep Learning Model":
|
| 81 |
+
return detect_gibberish_deep(line,f)
|
| 82 |
+
else:
|
| 83 |
+
return detect_gibberish(line, f)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
inputLine=gr.inputs.Textbox(lines=1, placeholder="Input text here, if both text and file have values, only the text input will be processed.", default="", label="Text", optional=False)
|
| 87 |
inputFile=gr.inputs.File(file_count="single", type="file", label="File to Annotate", optional=True)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
choices = ["Deep Learning Model", "Markov Chain"]
|
| 91 |
+
inputModel=gr.inputs.Dropdown(choices)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
outputLine=gr.outputs.Textbox(type="auto", label=None)
|
| 95 |
outputFile=gr.outputs.File( label="Annotated CSV")
|
| 96 |
+
label = gr.outputs.Label(num_top_classes=4)
|
| 97 |
+
|
| 98 |
|
| 99 |
examples=[
|
| 100 |
+
["Deep Learning Model","quetzalcoatl","demo_blank.csv"],
|
| 101 |
+
["Deep Learning Model","aasdf","demo_blank.csv"],
|
| 102 |
+
["Deep Learning Model","Covfefe","demo_blank.csv"],
|
| 103 |
+
["Markov Chain","quetzalcoatl","demo_blank.csv"],
|
| 104 |
+
["Markov Chain","aasdf","demo_blank.csv"],
|
| 105 |
+
["Markov Chain","Covfefe","demo_blank.csv"],
|
| 106 |
+
["Deep Learning Model","","demo_bad.txt"],
|
| 107 |
+
["Deep Learning Model","","demo_mixed.txt"],
|
| 108 |
+
["Markov Chain","","demo_bad.txt"],
|
| 109 |
+
["Markov Chain","","demo_mixed.txt"],
|
| 110 |
]
|
| 111 |
+
#iface = gr.Interface(fn=[detect_gibberish], inputs=["text",inputFile], outputs=["text",outputFile],examples=examples, allow_flagging='never')
|
| 112 |
+
|
| 113 |
+
#iface.launch()
|
| 114 |
+
|
| 115 |
|
| 116 |
+
iface = gr.Interface(fn=[detect_gibberish_abstract], inputs=[inputModel,inputLine,inputFile], outputs=["text",outputFile,label],examples=examples, allow_flagging='never')
|
| 117 |
+
iface.launch()
|
demo_mixed.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"The quick brown fox."
|
| 2 |
+
"nmnjcviburili,<>"
|
| 3 |
+
"This is a legitimate line"
|
| 4 |
+
"ertrjiloifdfyyoiu"
|
| 5 |
+
"1+1 =2"
|