# AUTOGENERATED! DO NOT EDIT! File to edit: . (unless otherwise specified). __all__ = ['is_cat', 'learn', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf'] # Cell from fastai.vision.all import * import gradio as gr # Function to check if an image is of a cat or dog based on filename capitalization def is_cat(x): return x[0].isupper() # Load the trained model learn = load_learner('model.pkl') # Define categories for classification categories = ('Dog', 'Cat') # Image classification function def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) # Gradio UI components image = gr.Image(type="pil") # Use "pil" to ensure image is passed correctly label = gr.Label() # Updated from `gr.outputs.Label()` examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg'] # Ensure these files exist # Define the Gradio interface intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) # Launch the Gradio app intf.launch(inline=False)