first draft
Browse files- .gitattributes +19 -0
- added_tokens.json +1 -0
- app.py +58 -0
- config.json +13 -0
- donut/__init__.py +16 -0
- donut/__pycache__/__init__.cpython-311.pyc +0 -0
- donut/__pycache__/model.cpython-311.pyc +0 -0
- donut/__pycache__/util.cpython-311.pyc +0 -0
- donut/_version.py +6 -0
- donut/model.py +609 -0
- donut/util.py +344 -0
- images/belgium_2.PNG +3 -0
- images/denmark_2.jpeg +0 -0
- images/estonia.PNG +3 -0
- images/guiana.PNG +3 -0
- images/iraq.PNG +3 -0
- images/ireland.PNG +3 -0
- images/mali_2.PNG +3 -0
- images/newzealand_4.PNG +3 -0
- images/poland_3.PNG +3 -0
- images/portugal_3.PNG +3 -0
- images/singapore_3.PNG +3 -0
- images/spain.PNG +3 -0
- images/spain_3.PNG +3 -0
- images/suriname.PNG +3 -0
- images/switzerland_2.PNG +3 -0
- images/switzerland_4.PNG +3 -0
- images/thailand_5.PNG +3 -0
- images/togo_2.PNG +3 -0
- images/uk.PNG +3 -0
- images/uk_3.PNG +3 -0
- pytorch_model.bin +3 -0
- requirements.txt +6 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,22 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
images/belgium_2.PNG filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
images/estonia.PNG filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
images/guiana.PNG filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
images/iraq.PNG filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
images/ireland.PNG filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
images/mali_2.PNG filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
images/newzealand_4.PNG filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
images/poland_3.PNG filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
images/portugal_3.PNG filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
images/singapore_3.PNG filter=lfs diff=lfs merge=lfs -text
|
| 46 |
+
images/spain_3.PNG filter=lfs diff=lfs merge=lfs -text
|
| 47 |
+
images/spain.PNG filter=lfs diff=lfs merge=lfs -text
|
| 48 |
+
images/suriname.PNG filter=lfs diff=lfs merge=lfs -text
|
| 49 |
+
images/switzerland_2.PNG filter=lfs diff=lfs merge=lfs -text
|
| 50 |
+
images/switzerland_4.PNG filter=lfs diff=lfs merge=lfs -text
|
| 51 |
+
images/thailand_5.PNG filter=lfs diff=lfs merge=lfs -text
|
| 52 |
+
images/togo_2.PNG filter=lfs diff=lfs merge=lfs -text
|
| 53 |
+
images/uk_3.PNG filter=lfs diff=lfs merge=lfs -text
|
| 54 |
+
images/uk.PNG filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"<sep/>": 57522, "<s_iitcdip>": 57523, "<s_synthdog>": 57524, "<-1/>": 57525, "</s_MachineReadableZone>": 57526, "<s_MachineReadableZone>": 57527, "<s_INPUT_data>": 57528}
|
app.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import os
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
from donut import DonutModel
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def demo_process_vqa(input_img, question):
|
| 11 |
+
global pretrained_model, task_prompt, task_name
|
| 12 |
+
input_img = Image.fromarray(input_img)
|
| 13 |
+
user_prompt = task_prompt.replace("{user_input}", question)
|
| 14 |
+
return pretrained_model.inference(input_img, prompt=user_prompt)["predictions"][0]
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def demo_process(input_img):
|
| 18 |
+
global pretrained_model, task_prompt, task_name
|
| 19 |
+
input_img = Image.fromarray(input_img)
|
| 20 |
+
best_output = pretrained_model.inference(image=input_img, prompt=task_prompt)["predictions"][0]
|
| 21 |
+
return best_output["text_sequence"].split(" </s_MachineReadableZone>")[0]
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
if __name__ == "__main__":
|
| 25 |
+
parser = argparse.ArgumentParser()
|
| 26 |
+
parser.add_argument("--task", type=str, default="s_passport")
|
| 27 |
+
parser.add_argument("--pretrained_path", type=str, default=os.getcwd())
|
| 28 |
+
parser.add_argument("--port", type=int, default=12345)
|
| 29 |
+
parser.add_argument("--url", type=str, default="0.0.0.0")
|
| 30 |
+
parser.add_argument("--sample_img_path", type=str)
|
| 31 |
+
args, left_argv = parser.parse_known_args()
|
| 32 |
+
|
| 33 |
+
task_name = args.task
|
| 34 |
+
if "docvqa" == task_name:
|
| 35 |
+
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
|
| 36 |
+
else: # rvlcdip, cord, ...
|
| 37 |
+
task_prompt = f"<s_{task_name}>"
|
| 38 |
+
|
| 39 |
+
example_sample = [os.path.join("images", image) for image in os.listdir("images")]
|
| 40 |
+
if args.sample_img_path:
|
| 41 |
+
example_sample.append(args.sample_img_path)
|
| 42 |
+
|
| 43 |
+
pretrained_model = DonutModel.from_pretrained(args.pretrained_path)
|
| 44 |
+
|
| 45 |
+
if torch.cuda.is_available():
|
| 46 |
+
pretrained_model.half()
|
| 47 |
+
device = torch.device("cuda")
|
| 48 |
+
pretrained_model.to(device)
|
| 49 |
+
|
| 50 |
+
pretrained_model.eval()
|
| 51 |
+
|
| 52 |
+
gr.Interface(
|
| 53 |
+
fn=demo_process_vqa if task_name == "docvqa" else demo_process,
|
| 54 |
+
inputs=["image", "text"] if task_name == "docvqa" else "image",
|
| 55 |
+
outputs="text",
|
| 56 |
+
title="Demo of MRZ Extraction model based on 🍩 architecture",
|
| 57 |
+
examples=example_sample if example_sample else None
|
| 58 |
+
).launch()
|
config.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": ".",
|
| 3 |
+
"align_long_axis": false,
|
| 4 |
+
"architectures": [
|
| 5 |
+
"DonutModel"
|
| 6 |
+
],
|
| 7 |
+
"input_size": [1280,960],
|
| 8 |
+
"max_length": 768,
|
| 9 |
+
"model_type": "donut",
|
| 10 |
+
"torch_dtype": "float32",
|
| 11 |
+
"transformers_version": "4.11.3",
|
| 12 |
+
"window_size": 10
|
| 13 |
+
}
|
donut/__init__.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Donut
|
| 3 |
+
Copyright (c) 2022-present NAVER Corp.
|
| 4 |
+
MIT License
|
| 5 |
+
"""
|
| 6 |
+
from .model import DonutConfig, DonutModel
|
| 7 |
+
from .util import DonutDataset, JSONParseEvaluator, load_json, save_json
|
| 8 |
+
|
| 9 |
+
__all__ = [
|
| 10 |
+
"DonutConfig",
|
| 11 |
+
"DonutModel",
|
| 12 |
+
"DonutDataset",
|
| 13 |
+
"JSONParseEvaluator",
|
| 14 |
+
"load_json",
|
| 15 |
+
"save_json",
|
| 16 |
+
]
|
donut/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (565 Bytes). View file
|
|
|
donut/__pycache__/model.cpython-311.pyc
ADDED
|
Binary file (31.3 kB). View file
|
|
|
donut/__pycache__/util.cpython-311.pyc
ADDED
|
Binary file (18.1 kB). View file
|
|
|
donut/_version.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Donut
|
| 3 |
+
Copyright (c) 2022-present NAVER Corp.
|
| 4 |
+
MIT License
|
| 5 |
+
"""
|
| 6 |
+
__version__ = "1.0.9"
|
donut/model.py
ADDED
|
@@ -0,0 +1,609 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Donut
|
| 3 |
+
Copyright (c) 2022-present NAVER Corp.
|
| 4 |
+
MIT License
|
| 5 |
+
"""
|
| 6 |
+
import math
|
| 7 |
+
import os
|
| 8 |
+
import re
|
| 9 |
+
from typing import Any, List, Optional, Union
|
| 10 |
+
|
| 11 |
+
import numpy as np
|
| 12 |
+
import PIL
|
| 13 |
+
import timm
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
import torch.nn.functional as F
|
| 17 |
+
from PIL import ImageOps
|
| 18 |
+
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
| 19 |
+
from timm.models.swin_transformer import SwinTransformer
|
| 20 |
+
from torchvision import transforms
|
| 21 |
+
from torchvision.transforms.functional import resize, rotate
|
| 22 |
+
from transformers import MBartConfig, MBartForCausalLM, XLMRobertaTokenizer
|
| 23 |
+
from transformers.file_utils import ModelOutput
|
| 24 |
+
from transformers.modeling_utils import PretrainedConfig, PreTrainedModel
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class SwinEncoder(nn.Module):
|
| 28 |
+
r"""
|
| 29 |
+
Donut encoder based on SwinTransformer
|
| 30 |
+
Set the initial weights and configuration with a pretrained SwinTransformer and then
|
| 31 |
+
modify the detailed configurations as a Donut Encoder
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
input_size: Input image size (width, height)
|
| 35 |
+
align_long_axis: Whether to rotate image if height is greater than width
|
| 36 |
+
window_size: Window size(=patch size) of SwinTransformer
|
| 37 |
+
encoder_layer: Number of layers of SwinTransformer encoder
|
| 38 |
+
name_or_path: Name of a pretrained model name either registered in huggingface.co. or saved in local.
|
| 39 |
+
otherwise, `swin_base_patch4_window12_384` will be set (using `timm`).
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
def __init__(
|
| 43 |
+
self,
|
| 44 |
+
input_size: List[int],
|
| 45 |
+
align_long_axis: bool,
|
| 46 |
+
window_size: int,
|
| 47 |
+
encoder_layer: List[int],
|
| 48 |
+
name_or_path: Union[str, bytes, os.PathLike] = None,
|
| 49 |
+
):
|
| 50 |
+
super().__init__()
|
| 51 |
+
self.input_size = input_size
|
| 52 |
+
self.align_long_axis = align_long_axis
|
| 53 |
+
self.window_size = window_size
|
| 54 |
+
self.encoder_layer = encoder_layer
|
| 55 |
+
|
| 56 |
+
self.to_tensor = transforms.Compose(
|
| 57 |
+
[
|
| 58 |
+
transforms.ToTensor(),
|
| 59 |
+
transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD),
|
| 60 |
+
]
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
self.model = SwinTransformer(
|
| 64 |
+
img_size=self.input_size,
|
| 65 |
+
depths=self.encoder_layer,
|
| 66 |
+
window_size=self.window_size,
|
| 67 |
+
patch_size=4,
|
| 68 |
+
embed_dim=128,
|
| 69 |
+
num_heads=[4, 8, 16, 32],
|
| 70 |
+
num_classes=0,
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
# weight init with swin
|
| 74 |
+
if not name_or_path:
|
| 75 |
+
swin_state_dict = timm.create_model("swin_base_patch4_window12_384", pretrained=True).state_dict()
|
| 76 |
+
new_swin_state_dict = self.model.state_dict()
|
| 77 |
+
for x in new_swin_state_dict:
|
| 78 |
+
if x.endswith("relative_position_index") or x.endswith("attn_mask"):
|
| 79 |
+
pass
|
| 80 |
+
elif (
|
| 81 |
+
x.endswith("relative_position_bias_table")
|
| 82 |
+
and self.model.layers[0].blocks[0].attn.window_size[0] != 12
|
| 83 |
+
):
|
| 84 |
+
pos_bias = swin_state_dict[x].unsqueeze(0)[0]
|
| 85 |
+
old_len = int(math.sqrt(len(pos_bias)))
|
| 86 |
+
new_len = int(2 * window_size - 1)
|
| 87 |
+
pos_bias = pos_bias.reshape(1, old_len, old_len, -1).permute(0, 3, 1, 2)
|
| 88 |
+
pos_bias = F.interpolate(pos_bias, size=(new_len, new_len), mode="bicubic", align_corners=False)
|
| 89 |
+
new_swin_state_dict[x] = pos_bias.permute(0, 2, 3, 1).reshape(1, new_len ** 2, -1).squeeze(0)
|
| 90 |
+
else:
|
| 91 |
+
new_swin_state_dict[x] = swin_state_dict[x]
|
| 92 |
+
self.model.load_state_dict(new_swin_state_dict)
|
| 93 |
+
|
| 94 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 95 |
+
"""
|
| 96 |
+
Args:
|
| 97 |
+
x: (batch_size, num_channels, height, width)
|
| 98 |
+
"""
|
| 99 |
+
x = self.model.patch_embed(x)
|
| 100 |
+
x = self.model.pos_drop(x)
|
| 101 |
+
x = self.model.layers(x)
|
| 102 |
+
return x
|
| 103 |
+
|
| 104 |
+
def prepare_input(self, img: PIL.Image.Image, random_padding: bool = False) -> torch.Tensor:
|
| 105 |
+
"""
|
| 106 |
+
Convert PIL Image to tensor according to specified input_size after following steps below:
|
| 107 |
+
- resize
|
| 108 |
+
- rotate (if align_long_axis is True and image is not aligned longer axis with canvas)
|
| 109 |
+
- pad
|
| 110 |
+
"""
|
| 111 |
+
img = img.convert("RGB")
|
| 112 |
+
if self.align_long_axis and (
|
| 113 |
+
(self.input_size[0] > self.input_size[1] and img.width > img.height)
|
| 114 |
+
or (self.input_size[0] < self.input_size[1] and img.width < img.height)
|
| 115 |
+
):
|
| 116 |
+
img = rotate(img, angle=-90, expand=True)
|
| 117 |
+
img = resize(img, min(self.input_size))
|
| 118 |
+
img.thumbnail((self.input_size[1], self.input_size[0]))
|
| 119 |
+
delta_width = self.input_size[1] - img.width
|
| 120 |
+
delta_height = self.input_size[0] - img.height
|
| 121 |
+
if random_padding:
|
| 122 |
+
pad_width = np.random.randint(low=0, high=delta_width + 1)
|
| 123 |
+
pad_height = np.random.randint(low=0, high=delta_height + 1)
|
| 124 |
+
else:
|
| 125 |
+
pad_width = delta_width // 2
|
| 126 |
+
pad_height = delta_height // 2
|
| 127 |
+
padding = (
|
| 128 |
+
pad_width,
|
| 129 |
+
pad_height,
|
| 130 |
+
delta_width - pad_width,
|
| 131 |
+
delta_height - pad_height,
|
| 132 |
+
)
|
| 133 |
+
return self.to_tensor(ImageOps.expand(img, padding))
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class BARTDecoder(nn.Module):
|
| 137 |
+
"""
|
| 138 |
+
Donut Decoder based on Multilingual BART
|
| 139 |
+
Set the initial weights and configuration with a pretrained multilingual BART model,
|
| 140 |
+
and modify the detailed configurations as a Donut decoder
|
| 141 |
+
|
| 142 |
+
Args:
|
| 143 |
+
decoder_layer:
|
| 144 |
+
Number of layers of BARTDecoder
|
| 145 |
+
max_position_embeddings:
|
| 146 |
+
The maximum sequence length to be trained
|
| 147 |
+
name_or_path:
|
| 148 |
+
Name of a pretrained model name either registered in huggingface.co. or saved in local,
|
| 149 |
+
otherwise, `hyunwoongko/asian-bart-ecjk` will be set (using `transformers`)
|
| 150 |
+
"""
|
| 151 |
+
|
| 152 |
+
def __init__(
|
| 153 |
+
self, decoder_layer: int, max_position_embeddings: int, name_or_path: Union[str, bytes, os.PathLike] = None
|
| 154 |
+
):
|
| 155 |
+
super().__init__()
|
| 156 |
+
self.decoder_layer = decoder_layer
|
| 157 |
+
self.max_position_embeddings = max_position_embeddings
|
| 158 |
+
|
| 159 |
+
self.tokenizer = XLMRobertaTokenizer.from_pretrained(
|
| 160 |
+
"hyunwoongko/asian-bart-ecjk" if not name_or_path else name_or_path
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
self.model = MBartForCausalLM(
|
| 164 |
+
config=MBartConfig(
|
| 165 |
+
is_decoder=True,
|
| 166 |
+
is_encoder_decoder=False,
|
| 167 |
+
add_cross_attention=True,
|
| 168 |
+
decoder_layers=self.decoder_layer,
|
| 169 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 170 |
+
vocab_size=len(self.tokenizer),
|
| 171 |
+
scale_embedding=True,
|
| 172 |
+
add_final_layer_norm=True,
|
| 173 |
+
)
|
| 174 |
+
)
|
| 175 |
+
self.model.forward = self.forward # to get cross attentions and utilize `generate` function
|
| 176 |
+
|
| 177 |
+
self.model.config.is_encoder_decoder = True # to get cross-attention
|
| 178 |
+
self.add_special_tokens(["<sep/>"]) # <sep/> is used for representing a list in a JSON
|
| 179 |
+
self.model.model.decoder.embed_tokens.padding_idx = self.tokenizer.pad_token_id
|
| 180 |
+
self.model.prepare_inputs_for_generation = self.prepare_inputs_for_inference
|
| 181 |
+
|
| 182 |
+
# weight init with asian-bart
|
| 183 |
+
if not name_or_path:
|
| 184 |
+
bart_state_dict = MBartForCausalLM.from_pretrained("hyunwoongko/asian-bart-ecjk").state_dict()
|
| 185 |
+
new_bart_state_dict = self.model.state_dict()
|
| 186 |
+
for x in new_bart_state_dict:
|
| 187 |
+
if x.endswith("embed_positions.weight") and self.max_position_embeddings != 1024:
|
| 188 |
+
new_bart_state_dict[x] = torch.nn.Parameter(
|
| 189 |
+
self.resize_bart_abs_pos_emb(
|
| 190 |
+
bart_state_dict[x],
|
| 191 |
+
self.max_position_embeddings
|
| 192 |
+
+ 2, # https://github.com/huggingface/transformers/blob/v4.11.3/src/transformers/models/mbart/modeling_mbart.py#L118-L119
|
| 193 |
+
)
|
| 194 |
+
)
|
| 195 |
+
elif x.endswith("embed_tokens.weight") or x.endswith("lm_head.weight"):
|
| 196 |
+
new_bart_state_dict[x] = bart_state_dict[x][: len(self.tokenizer), :]
|
| 197 |
+
else:
|
| 198 |
+
new_bart_state_dict[x] = bart_state_dict[x]
|
| 199 |
+
self.model.load_state_dict(new_bart_state_dict)
|
| 200 |
+
|
| 201 |
+
def add_special_tokens(self, list_of_tokens: List[str]):
|
| 202 |
+
"""
|
| 203 |
+
Add special tokens to tokenizer and resize the token embeddings
|
| 204 |
+
"""
|
| 205 |
+
newly_added_num = self.tokenizer.add_special_tokens({"additional_special_tokens": sorted(set(list_of_tokens))})
|
| 206 |
+
if newly_added_num > 0:
|
| 207 |
+
self.model.resize_token_embeddings(len(self.tokenizer))
|
| 208 |
+
|
| 209 |
+
def prepare_inputs_for_inference(self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past=None, use_cache: bool = None, attention_mask: torch.Tensor = None):
|
| 210 |
+
"""
|
| 211 |
+
Args:
|
| 212 |
+
input_ids: (batch_size, sequence_lenth)
|
| 213 |
+
Returns:
|
| 214 |
+
input_ids: (batch_size, sequence_length)
|
| 215 |
+
attention_mask: (batch_size, sequence_length)
|
| 216 |
+
encoder_hidden_states: (batch_size, sequence_length, embedding_dim)
|
| 217 |
+
"""
|
| 218 |
+
attention_mask = input_ids.ne(self.tokenizer.pad_token_id).long()
|
| 219 |
+
if past is not None:
|
| 220 |
+
input_ids = input_ids[:, -1:]
|
| 221 |
+
output = {
|
| 222 |
+
"input_ids": input_ids,
|
| 223 |
+
"attention_mask": attention_mask,
|
| 224 |
+
"past_key_values": past,
|
| 225 |
+
"use_cache": use_cache,
|
| 226 |
+
"encoder_hidden_states": encoder_outputs.last_hidden_state,
|
| 227 |
+
}
|
| 228 |
+
return output
|
| 229 |
+
|
| 230 |
+
def forward(
|
| 231 |
+
self,
|
| 232 |
+
input_ids,
|
| 233 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 234 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 235 |
+
past_key_values: Optional[torch.Tensor] = None,
|
| 236 |
+
labels: Optional[torch.Tensor] = None,
|
| 237 |
+
use_cache: bool = None,
|
| 238 |
+
output_attentions: Optional[torch.Tensor] = None,
|
| 239 |
+
output_hidden_states: Optional[torch.Tensor] = None,
|
| 240 |
+
return_dict: bool = None,
|
| 241 |
+
):
|
| 242 |
+
"""
|
| 243 |
+
A forward fucntion to get cross attentions and utilize `generate` function
|
| 244 |
+
|
| 245 |
+
Source:
|
| 246 |
+
https://github.com/huggingface/transformers/blob/v4.11.3/src/transformers/models/mbart/modeling_mbart.py#L1669-L1810
|
| 247 |
+
|
| 248 |
+
Args:
|
| 249 |
+
input_ids: (batch_size, sequence_length)
|
| 250 |
+
attention_mask: (batch_size, sequence_length)
|
| 251 |
+
encoder_hidden_states: (batch_size, sequence_length, hidden_size)
|
| 252 |
+
|
| 253 |
+
Returns:
|
| 254 |
+
loss: (1, )
|
| 255 |
+
logits: (batch_size, sequence_length, hidden_dim)
|
| 256 |
+
hidden_states: (batch_size, sequence_length, hidden_size)
|
| 257 |
+
decoder_attentions: (batch_size, num_heads, sequence_length, sequence_length)
|
| 258 |
+
cross_attentions: (batch_size, num_heads, sequence_length, sequence_length)
|
| 259 |
+
"""
|
| 260 |
+
output_attentions = output_attentions if output_attentions is not None else self.model.config.output_attentions
|
| 261 |
+
output_hidden_states = (
|
| 262 |
+
output_hidden_states if output_hidden_states is not None else self.model.config.output_hidden_states
|
| 263 |
+
)
|
| 264 |
+
return_dict = return_dict if return_dict is not None else self.model.config.use_return_dict
|
| 265 |
+
outputs = self.model.model.decoder(
|
| 266 |
+
input_ids=input_ids,
|
| 267 |
+
attention_mask=attention_mask,
|
| 268 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 269 |
+
past_key_values=past_key_values,
|
| 270 |
+
use_cache=use_cache,
|
| 271 |
+
output_attentions=output_attentions,
|
| 272 |
+
output_hidden_states=output_hidden_states,
|
| 273 |
+
return_dict=return_dict,
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
logits = self.model.lm_head(outputs[0])
|
| 277 |
+
|
| 278 |
+
loss = None
|
| 279 |
+
if labels is not None:
|
| 280 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
|
| 281 |
+
loss = loss_fct(logits.view(-1, self.model.config.vocab_size), labels.view(-1))
|
| 282 |
+
|
| 283 |
+
if not return_dict:
|
| 284 |
+
output = (logits,) + outputs[1:]
|
| 285 |
+
return (loss,) + output if loss is not None else output
|
| 286 |
+
|
| 287 |
+
return ModelOutput(
|
| 288 |
+
loss=loss,
|
| 289 |
+
logits=logits,
|
| 290 |
+
past_key_values=outputs.past_key_values,
|
| 291 |
+
hidden_states=outputs.hidden_states,
|
| 292 |
+
decoder_attentions=outputs.attentions,
|
| 293 |
+
cross_attentions=outputs.cross_attentions,
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
@staticmethod
|
| 297 |
+
def resize_bart_abs_pos_emb(weight: torch.Tensor, max_length: int) -> torch.Tensor:
|
| 298 |
+
"""
|
| 299 |
+
Resize position embeddings
|
| 300 |
+
Truncate if sequence length of Bart backbone is greater than given max_length,
|
| 301 |
+
else interpolate to max_length
|
| 302 |
+
"""
|
| 303 |
+
if weight.shape[0] > max_length:
|
| 304 |
+
weight = weight[:max_length, ...]
|
| 305 |
+
else:
|
| 306 |
+
weight = (
|
| 307 |
+
F.interpolate(
|
| 308 |
+
weight.permute(1, 0).unsqueeze(0),
|
| 309 |
+
size=max_length,
|
| 310 |
+
mode="linear",
|
| 311 |
+
align_corners=False,
|
| 312 |
+
)
|
| 313 |
+
.squeeze(0)
|
| 314 |
+
.permute(1, 0)
|
| 315 |
+
)
|
| 316 |
+
return weight
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
class DonutConfig(PretrainedConfig):
|
| 320 |
+
r"""
|
| 321 |
+
This is the configuration class to store the configuration of a [`DonutModel`]. It is used to
|
| 322 |
+
instantiate a Donut model according to the specified arguments, defining the model architecture
|
| 323 |
+
|
| 324 |
+
Args:
|
| 325 |
+
input_size:
|
| 326 |
+
Input image size (canvas size) of Donut.encoder, SwinTransformer in this codebase
|
| 327 |
+
align_long_axis:
|
| 328 |
+
Whether to rotate image if height is greater than width
|
| 329 |
+
window_size:
|
| 330 |
+
Window size of Donut.encoder, SwinTransformer in this codebase
|
| 331 |
+
encoder_layer:
|
| 332 |
+
Depth of each Donut.encoder Encoder layer, SwinTransformer in this codebase
|
| 333 |
+
decoder_layer:
|
| 334 |
+
Number of hidden layers in the Donut.decoder, such as BART
|
| 335 |
+
max_position_embeddings
|
| 336 |
+
Trained max position embeddings in the Donut decoder,
|
| 337 |
+
if not specified, it will have same value with max_length
|
| 338 |
+
max_length:
|
| 339 |
+
Max position embeddings(=maximum sequence length) you want to train
|
| 340 |
+
name_or_path:
|
| 341 |
+
Name of a pretrained model name either registered in huggingface.co. or saved in local
|
| 342 |
+
"""
|
| 343 |
+
|
| 344 |
+
model_type = "donut"
|
| 345 |
+
|
| 346 |
+
def __init__(
|
| 347 |
+
self,
|
| 348 |
+
input_size: List[int] = [2560, 1920],
|
| 349 |
+
align_long_axis: bool = False,
|
| 350 |
+
window_size: int = 10,
|
| 351 |
+
encoder_layer: List[int] = [2, 2, 14, 2],
|
| 352 |
+
decoder_layer: int = 4,
|
| 353 |
+
max_position_embeddings: int = None,
|
| 354 |
+
max_length: int = 1536,
|
| 355 |
+
name_or_path: Union[str, bytes, os.PathLike] = "",
|
| 356 |
+
**kwargs,
|
| 357 |
+
):
|
| 358 |
+
super().__init__()
|
| 359 |
+
self.input_size = input_size
|
| 360 |
+
self.align_long_axis = align_long_axis
|
| 361 |
+
self.window_size = window_size
|
| 362 |
+
self.encoder_layer = encoder_layer
|
| 363 |
+
self.decoder_layer = decoder_layer
|
| 364 |
+
self.max_position_embeddings = max_length if max_position_embeddings is None else max_position_embeddings
|
| 365 |
+
self.max_length = max_length
|
| 366 |
+
self.name_or_path = name_or_path
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
class DonutModel(PreTrainedModel):
|
| 370 |
+
r"""
|
| 371 |
+
Donut: an E2E OCR-free Document Understanding Transformer.
|
| 372 |
+
The encoder maps an input document image into a set of embeddings,
|
| 373 |
+
the decoder predicts a desired token sequence, that can be converted to a structured format,
|
| 374 |
+
given a prompt and the encoder output embeddings
|
| 375 |
+
"""
|
| 376 |
+
config_class = DonutConfig
|
| 377 |
+
base_model_prefix = "donut"
|
| 378 |
+
|
| 379 |
+
def __init__(self, config: DonutConfig):
|
| 380 |
+
super().__init__(config)
|
| 381 |
+
self.config = config
|
| 382 |
+
self.encoder = SwinEncoder(
|
| 383 |
+
input_size=self.config.input_size,
|
| 384 |
+
align_long_axis=self.config.align_long_axis,
|
| 385 |
+
window_size=self.config.window_size,
|
| 386 |
+
encoder_layer=self.config.encoder_layer,
|
| 387 |
+
name_or_path=self.config.name_or_path,
|
| 388 |
+
)
|
| 389 |
+
self.decoder = BARTDecoder(
|
| 390 |
+
max_position_embeddings=self.config.max_position_embeddings,
|
| 391 |
+
decoder_layer=self.config.decoder_layer,
|
| 392 |
+
name_or_path=self.config.name_or_path,
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
def forward(self, image_tensors: torch.Tensor, decoder_input_ids: torch.Tensor, decoder_labels: torch.Tensor):
|
| 396 |
+
"""
|
| 397 |
+
Calculate a loss given an input image and a desired token sequence,
|
| 398 |
+
the model will be trained in a teacher-forcing manner
|
| 399 |
+
|
| 400 |
+
Args:
|
| 401 |
+
image_tensors: (batch_size, num_channels, height, width)
|
| 402 |
+
decoder_input_ids: (batch_size, sequence_length, embedding_dim)
|
| 403 |
+
decode_labels: (batch_size, sequence_length)
|
| 404 |
+
"""
|
| 405 |
+
encoder_outputs = self.encoder(image_tensors)
|
| 406 |
+
decoder_outputs = self.decoder(
|
| 407 |
+
input_ids=decoder_input_ids,
|
| 408 |
+
encoder_hidden_states=encoder_outputs,
|
| 409 |
+
labels=decoder_labels,
|
| 410 |
+
)
|
| 411 |
+
return decoder_outputs
|
| 412 |
+
|
| 413 |
+
def inference(
|
| 414 |
+
self,
|
| 415 |
+
image: PIL.Image = None,
|
| 416 |
+
prompt: str = None,
|
| 417 |
+
image_tensors: Optional[torch.Tensor] = None,
|
| 418 |
+
prompt_tensors: Optional[torch.Tensor] = None,
|
| 419 |
+
return_json: bool = True,
|
| 420 |
+
return_attentions: bool = False,
|
| 421 |
+
):
|
| 422 |
+
"""
|
| 423 |
+
Generate a token sequence in an auto-regressive manner,
|
| 424 |
+
the generated token sequence is convereted into an ordered JSON format
|
| 425 |
+
|
| 426 |
+
Args:
|
| 427 |
+
image: input document image (PIL.Image)
|
| 428 |
+
prompt: task prompt (string) to guide Donut Decoder generation
|
| 429 |
+
image_tensors: (1, num_channels, height, width)
|
| 430 |
+
convert prompt to tensor if image_tensor is not fed
|
| 431 |
+
prompt_tensors: (1, sequence_length)
|
| 432 |
+
convert image to tensor if prompt_tensor is not fed
|
| 433 |
+
"""
|
| 434 |
+
# prepare backbone inputs (image and prompt)
|
| 435 |
+
if image is None and image_tensors is None:
|
| 436 |
+
raise ValueError("Expected either image or image_tensors")
|
| 437 |
+
if all(v is None for v in {prompt, prompt_tensors}):
|
| 438 |
+
raise ValueError("Expected either prompt or prompt_tensors")
|
| 439 |
+
|
| 440 |
+
if image_tensors is None:
|
| 441 |
+
image_tensors = self.encoder.prepare_input(image).unsqueeze(0)
|
| 442 |
+
|
| 443 |
+
if self.device.type == "cuda": # half is not compatible in cpu implementation.
|
| 444 |
+
image_tensors = image_tensors.half()
|
| 445 |
+
image_tensors = image_tensors.to(self.device)
|
| 446 |
+
|
| 447 |
+
if prompt_tensors is None:
|
| 448 |
+
prompt_tensors = self.decoder.tokenizer(prompt, add_special_tokens=False, return_tensors="pt")["input_ids"]
|
| 449 |
+
|
| 450 |
+
prompt_tensors = prompt_tensors.to(self.device)
|
| 451 |
+
|
| 452 |
+
last_hidden_state = self.encoder(image_tensors)
|
| 453 |
+
if self.device.type != "cuda":
|
| 454 |
+
last_hidden_state = last_hidden_state.to(torch.float32)
|
| 455 |
+
|
| 456 |
+
encoder_outputs = ModelOutput(last_hidden_state=last_hidden_state, attentions=None)
|
| 457 |
+
|
| 458 |
+
if len(encoder_outputs.last_hidden_state.size()) == 1:
|
| 459 |
+
encoder_outputs.last_hidden_state = encoder_outputs.last_hidden_state.unsqueeze(0)
|
| 460 |
+
if len(prompt_tensors.size()) == 1:
|
| 461 |
+
prompt_tensors = prompt_tensors.unsqueeze(0)
|
| 462 |
+
|
| 463 |
+
# get decoder output
|
| 464 |
+
decoder_output = self.decoder.model.generate(
|
| 465 |
+
decoder_input_ids=prompt_tensors,
|
| 466 |
+
encoder_outputs=encoder_outputs,
|
| 467 |
+
max_length=self.config.max_length,
|
| 468 |
+
early_stopping=True,
|
| 469 |
+
pad_token_id=self.decoder.tokenizer.pad_token_id,
|
| 470 |
+
eos_token_id=self.decoder.tokenizer.eos_token_id,
|
| 471 |
+
use_cache=True,
|
| 472 |
+
num_beams=1,
|
| 473 |
+
bad_words_ids=[[self.decoder.tokenizer.unk_token_id]],
|
| 474 |
+
return_dict_in_generate=True,
|
| 475 |
+
output_attentions=return_attentions,
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
output = {"predictions": list()}
|
| 479 |
+
for seq in self.decoder.tokenizer.batch_decode(decoder_output.sequences):
|
| 480 |
+
seq = seq.replace(self.decoder.tokenizer.eos_token, "").replace(self.decoder.tokenizer.pad_token, "")
|
| 481 |
+
seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token
|
| 482 |
+
if return_json:
|
| 483 |
+
output["predictions"].append(self.token2json(seq))
|
| 484 |
+
else:
|
| 485 |
+
output["predictions"].append(seq)
|
| 486 |
+
|
| 487 |
+
if return_attentions:
|
| 488 |
+
output["attentions"] = {
|
| 489 |
+
"self_attentions": decoder_output.decoder_attentions,
|
| 490 |
+
"cross_attentions": decoder_output.cross_attentions,
|
| 491 |
+
}
|
| 492 |
+
|
| 493 |
+
return output
|
| 494 |
+
|
| 495 |
+
def json2token(self, obj: Any, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True):
|
| 496 |
+
"""
|
| 497 |
+
Convert an ordered JSON object into a token sequence
|
| 498 |
+
"""
|
| 499 |
+
if type(obj) == dict:
|
| 500 |
+
if len(obj) == 1 and "text_sequence" in obj:
|
| 501 |
+
return obj["text_sequence"]
|
| 502 |
+
else:
|
| 503 |
+
output = ""
|
| 504 |
+
if sort_json_key:
|
| 505 |
+
keys = sorted(obj.keys(), reverse=True)
|
| 506 |
+
else:
|
| 507 |
+
keys = obj.keys()
|
| 508 |
+
for k in keys:
|
| 509 |
+
if update_special_tokens_for_json_key:
|
| 510 |
+
self.decoder.add_special_tokens([fr"<s_{k}>", fr"</s_{k}>"])
|
| 511 |
+
output += (
|
| 512 |
+
fr"<s_{k}>"
|
| 513 |
+
+ self.json2token(obj[k], update_special_tokens_for_json_key, sort_json_key)
|
| 514 |
+
+ fr"</s_{k}>"
|
| 515 |
+
)
|
| 516 |
+
return output
|
| 517 |
+
elif type(obj) == list:
|
| 518 |
+
return r"<sep/>".join(
|
| 519 |
+
[self.json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj]
|
| 520 |
+
)
|
| 521 |
+
else:
|
| 522 |
+
obj = str(obj)
|
| 523 |
+
if f"<{obj}/>" in self.decoder.tokenizer.all_special_tokens:
|
| 524 |
+
obj = f"<{obj}/>" # for categorical special tokens
|
| 525 |
+
return obj
|
| 526 |
+
|
| 527 |
+
def token2json(self, tokens, is_inner_value=False):
|
| 528 |
+
"""
|
| 529 |
+
Convert a (generated) token seuqnce into an ordered JSON format
|
| 530 |
+
"""
|
| 531 |
+
output = dict()
|
| 532 |
+
|
| 533 |
+
while tokens:
|
| 534 |
+
start_token = re.search(r"<s_(.*?)>", tokens, re.IGNORECASE)
|
| 535 |
+
if start_token is None:
|
| 536 |
+
break
|
| 537 |
+
key = start_token.group(1)
|
| 538 |
+
end_token = re.search(fr"</s_{key}>", tokens, re.IGNORECASE)
|
| 539 |
+
start_token = start_token.group()
|
| 540 |
+
if end_token is None:
|
| 541 |
+
tokens = tokens.replace(start_token, "")
|
| 542 |
+
else:
|
| 543 |
+
end_token = end_token.group()
|
| 544 |
+
start_token_escaped = re.escape(start_token)
|
| 545 |
+
end_token_escaped = re.escape(end_token)
|
| 546 |
+
content = re.search(f"{start_token_escaped}(.*?){end_token_escaped}", tokens, re.IGNORECASE)
|
| 547 |
+
if content is not None:
|
| 548 |
+
content = content.group(1).strip()
|
| 549 |
+
if r"<s_" in content and r"</s_" in content: # non-leaf node
|
| 550 |
+
value = self.token2json(content, is_inner_value=True)
|
| 551 |
+
if value:
|
| 552 |
+
if len(value) == 1:
|
| 553 |
+
value = value[0]
|
| 554 |
+
output[key] = value
|
| 555 |
+
else: # leaf nodes
|
| 556 |
+
output[key] = []
|
| 557 |
+
for leaf in content.split(r"<sep/>"):
|
| 558 |
+
leaf = leaf.strip()
|
| 559 |
+
if (
|
| 560 |
+
leaf in self.decoder.tokenizer.get_added_vocab()
|
| 561 |
+
and leaf[0] == "<"
|
| 562 |
+
and leaf[-2:] == "/>"
|
| 563 |
+
):
|
| 564 |
+
leaf = leaf[1:-2] # for categorical special tokens
|
| 565 |
+
output[key].append(leaf)
|
| 566 |
+
if len(output[key]) == 1:
|
| 567 |
+
output[key] = output[key][0]
|
| 568 |
+
|
| 569 |
+
tokens = tokens[tokens.find(end_token) + len(end_token) :].strip()
|
| 570 |
+
if tokens[:6] == r"<sep/>": # non-leaf nodes
|
| 571 |
+
return [output] + self.token2json(tokens[6:], is_inner_value=True)
|
| 572 |
+
|
| 573 |
+
if len(output):
|
| 574 |
+
return [output] if is_inner_value else output
|
| 575 |
+
else:
|
| 576 |
+
return [] if is_inner_value else {"text_sequence": tokens}
|
| 577 |
+
|
| 578 |
+
@classmethod
|
| 579 |
+
def from_pretrained(
|
| 580 |
+
cls,
|
| 581 |
+
pretrained_model_name_or_path: Union[str, bytes, os.PathLike],
|
| 582 |
+
*model_args,
|
| 583 |
+
**kwargs,
|
| 584 |
+
):
|
| 585 |
+
r"""
|
| 586 |
+
Instantiate a pretrained donut model from a pre-trained model configuration
|
| 587 |
+
|
| 588 |
+
Args:
|
| 589 |
+
pretrained_model_name_or_path:
|
| 590 |
+
Name of a pretrained model name either registered in huggingface.co. or saved in local,
|
| 591 |
+
e.g., `naver-clova-ix/donut-base`, or `naver-clova-ix/donut-base-finetuned-rvlcdip`
|
| 592 |
+
"""
|
| 593 |
+
model = super(DonutModel, cls).from_pretrained(pretrained_model_name_or_path, revision="official", *model_args, **kwargs)
|
| 594 |
+
|
| 595 |
+
# truncate or interplolate position embeddings of donut decoder
|
| 596 |
+
max_length = kwargs.get("max_length", model.config.max_position_embeddings)
|
| 597 |
+
if (
|
| 598 |
+
max_length != model.config.max_position_embeddings
|
| 599 |
+
): # if max_length of trained model differs max_length you want to train
|
| 600 |
+
model.decoder.model.model.decoder.embed_positions.weight = torch.nn.Parameter(
|
| 601 |
+
model.decoder.resize_bart_abs_pos_emb(
|
| 602 |
+
model.decoder.model.model.decoder.embed_positions.weight,
|
| 603 |
+
max_length
|
| 604 |
+
+ 2, # https://github.com/huggingface/transformers/blob/v4.11.3/src/transformers/models/mbart/modeling_mbart.py#L118-L119
|
| 605 |
+
)
|
| 606 |
+
)
|
| 607 |
+
model.config.max_position_embeddings = max_length
|
| 608 |
+
|
| 609 |
+
return model
|
donut/util.py
ADDED
|
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Donut
|
| 3 |
+
Copyright (c) 2022-present NAVER Corp.
|
| 4 |
+
MIT License
|
| 5 |
+
"""
|
| 6 |
+
import json
|
| 7 |
+
import os
|
| 8 |
+
import random
|
| 9 |
+
from collections import defaultdict
|
| 10 |
+
from typing import Any, Dict, List, Tuple, Union
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
import zss
|
| 14 |
+
from datasets import load_dataset
|
| 15 |
+
from nltk import edit_distance
|
| 16 |
+
from torch.utils.data import Dataset
|
| 17 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 18 |
+
from zss import Node
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def save_json(write_path: Union[str, bytes, os.PathLike], save_obj: Any):
|
| 22 |
+
with open(write_path, "w") as f:
|
| 23 |
+
json.dump(save_obj, f)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def load_json(json_path: Union[str, bytes, os.PathLike]):
|
| 27 |
+
with open(json_path, "r") as f:
|
| 28 |
+
return json.load(f)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class DonutDataset(Dataset):
|
| 32 |
+
"""
|
| 33 |
+
DonutDataset which is saved in huggingface datasets format. (see details in https://huggingface.co/docs/datasets)
|
| 34 |
+
Each row, consists of image path(png/jpg/jpeg) and gt data (json/jsonl/txt),
|
| 35 |
+
and it will be converted into input_tensor(vectorized image) and input_ids(tokenized string)
|
| 36 |
+
|
| 37 |
+
Args:
|
| 38 |
+
dataset_name_or_path: name of dataset (available at huggingface.co/datasets) or the path containing image files and metadata.jsonl
|
| 39 |
+
ignore_id: ignore_index for torch.nn.CrossEntropyLoss
|
| 40 |
+
task_start_token: the special token to be fed to the decoder to conduct the target task
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
def __init__(
|
| 44 |
+
self,
|
| 45 |
+
dataset_name_or_path: str,
|
| 46 |
+
donut_model: PreTrainedModel,
|
| 47 |
+
max_length: int,
|
| 48 |
+
split: str = "train",
|
| 49 |
+
ignore_id: int = -100,
|
| 50 |
+
task_start_token: str = "<s>",
|
| 51 |
+
prompt_end_token: str = None,
|
| 52 |
+
sort_json_key: bool = True,
|
| 53 |
+
):
|
| 54 |
+
super().__init__()
|
| 55 |
+
|
| 56 |
+
self.donut_model = donut_model
|
| 57 |
+
self.max_length = max_length
|
| 58 |
+
self.split = split
|
| 59 |
+
self.ignore_id = ignore_id
|
| 60 |
+
self.task_start_token = task_start_token
|
| 61 |
+
self.prompt_end_token = prompt_end_token if prompt_end_token else task_start_token
|
| 62 |
+
self.sort_json_key = sort_json_key
|
| 63 |
+
|
| 64 |
+
self.dataset = load_dataset(dataset_name_or_path, split=self.split)
|
| 65 |
+
self.dataset_length = len(self.dataset)
|
| 66 |
+
|
| 67 |
+
self.gt_token_sequences = []
|
| 68 |
+
#print(self.dataset)
|
| 69 |
+
for sample in self.dataset:
|
| 70 |
+
# print(sample)
|
| 71 |
+
# print(sample['ground_truth'])
|
| 72 |
+
ground_truth = json.loads(sample["ground_truth"])
|
| 73 |
+
# print(ground_truth)
|
| 74 |
+
if "gt_parses" in ground_truth: # when multiple ground truths are available, e.g., docvqa
|
| 75 |
+
assert isinstance(ground_truth["gt_parses"], list)
|
| 76 |
+
gt_jsons = ground_truth["gt_parses"]
|
| 77 |
+
else:
|
| 78 |
+
assert "gt_parse" in ground_truth and isinstance(ground_truth["gt_parse"], dict)
|
| 79 |
+
gt_jsons = [ground_truth["gt_parse"]]
|
| 80 |
+
|
| 81 |
+
self.gt_token_sequences.append(
|
| 82 |
+
[
|
| 83 |
+
task_start_token
|
| 84 |
+
+ self.donut_model.json2token(
|
| 85 |
+
gt_json,
|
| 86 |
+
update_special_tokens_for_json_key=self.split == "train",
|
| 87 |
+
sort_json_key=self.sort_json_key,
|
| 88 |
+
)
|
| 89 |
+
+ self.donut_model.decoder.tokenizer.eos_token
|
| 90 |
+
for gt_json in gt_jsons # load json from list of json
|
| 91 |
+
]
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
self.donut_model.decoder.add_special_tokens([self.task_start_token, self.prompt_end_token])
|
| 95 |
+
self.prompt_end_token_id = self.donut_model.decoder.tokenizer.convert_tokens_to_ids(self.prompt_end_token)
|
| 96 |
+
|
| 97 |
+
def __len__(self) -> int:
|
| 98 |
+
return self.dataset_length
|
| 99 |
+
|
| 100 |
+
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 101 |
+
"""
|
| 102 |
+
Load image from image_path of given dataset_path and convert into input_tensor and labels.
|
| 103 |
+
Convert gt data into input_ids (tokenized string)
|
| 104 |
+
|
| 105 |
+
Returns:
|
| 106 |
+
input_tensor : preprocessed image
|
| 107 |
+
input_ids : tokenized gt_data
|
| 108 |
+
labels : masked labels (model doesn't need to predict prompt and pad token)
|
| 109 |
+
"""
|
| 110 |
+
sample = self.dataset[idx]
|
| 111 |
+
|
| 112 |
+
# input_tensor
|
| 113 |
+
input_tensor = self.donut_model.encoder.prepare_input(sample["image"], random_padding=self.split == "train")
|
| 114 |
+
|
| 115 |
+
# input_ids
|
| 116 |
+
processed_parse = random.choice(self.gt_token_sequences[idx]) # can be more than one, e.g., DocVQA Task 1
|
| 117 |
+
input_ids = self.donut_model.decoder.tokenizer(
|
| 118 |
+
processed_parse,
|
| 119 |
+
add_special_tokens=False,
|
| 120 |
+
max_length=self.max_length,
|
| 121 |
+
padding="max_length",
|
| 122 |
+
truncation=True,
|
| 123 |
+
return_tensors="pt",
|
| 124 |
+
)["input_ids"].squeeze(0)
|
| 125 |
+
|
| 126 |
+
if self.split == "train":
|
| 127 |
+
labels = input_ids.clone()
|
| 128 |
+
labels[
|
| 129 |
+
labels == self.donut_model.decoder.tokenizer.pad_token_id
|
| 130 |
+
] = self.ignore_id # model doesn't need to predict pad token
|
| 131 |
+
labels[
|
| 132 |
+
: torch.nonzero(labels == self.prompt_end_token_id).sum() + 1
|
| 133 |
+
] = self.ignore_id # model doesn't need to predict prompt (for VQA)
|
| 134 |
+
return input_tensor, input_ids, labels
|
| 135 |
+
else:
|
| 136 |
+
prompt_end_index = torch.nonzero(
|
| 137 |
+
input_ids == self.prompt_end_token_id
|
| 138 |
+
).sum() # return prompt end index instead of target output labels
|
| 139 |
+
return input_tensor, input_ids, prompt_end_index, processed_parse
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
class JSONParseEvaluator:
|
| 143 |
+
"""
|
| 144 |
+
Calculate n-TED(Normalized Tree Edit Distance) based accuracy and F1 accuracy score
|
| 145 |
+
"""
|
| 146 |
+
|
| 147 |
+
@staticmethod
|
| 148 |
+
def flatten(data: dict):
|
| 149 |
+
"""
|
| 150 |
+
Convert Dictionary into Non-nested Dictionary
|
| 151 |
+
Example:
|
| 152 |
+
input(dict)
|
| 153 |
+
{
|
| 154 |
+
"menu": [
|
| 155 |
+
{"name" : ["cake"], "count" : ["2"]},
|
| 156 |
+
{"name" : ["juice"], "count" : ["1"]},
|
| 157 |
+
]
|
| 158 |
+
}
|
| 159 |
+
output(list)
|
| 160 |
+
[
|
| 161 |
+
("menu.name", "cake"),
|
| 162 |
+
("menu.count", "2"),
|
| 163 |
+
("menu.name", "juice"),
|
| 164 |
+
("menu.count", "1"),
|
| 165 |
+
]
|
| 166 |
+
"""
|
| 167 |
+
flatten_data = list()
|
| 168 |
+
|
| 169 |
+
def _flatten(value, key=""):
|
| 170 |
+
if type(value) is dict:
|
| 171 |
+
for child_key, child_value in value.items():
|
| 172 |
+
_flatten(child_value, f"{key}.{child_key}" if key else child_key)
|
| 173 |
+
elif type(value) is list:
|
| 174 |
+
for value_item in value:
|
| 175 |
+
_flatten(value_item, key)
|
| 176 |
+
else:
|
| 177 |
+
flatten_data.append((key, value))
|
| 178 |
+
|
| 179 |
+
_flatten(data)
|
| 180 |
+
return flatten_data
|
| 181 |
+
|
| 182 |
+
@staticmethod
|
| 183 |
+
def update_cost(node1: Node, node2: Node):
|
| 184 |
+
"""
|
| 185 |
+
Update cost for tree edit distance.
|
| 186 |
+
If both are leaf node, calculate string edit distance between two labels (special token '<leaf>' will be ignored).
|
| 187 |
+
If one of them is leaf node, cost is length of string in leaf node + 1.
|
| 188 |
+
If neither are leaf node, cost is 0 if label1 is same with label2 othewise 1
|
| 189 |
+
"""
|
| 190 |
+
label1 = node1.label
|
| 191 |
+
label2 = node2.label
|
| 192 |
+
label1_leaf = "<leaf>" in label1
|
| 193 |
+
label2_leaf = "<leaf>" in label2
|
| 194 |
+
if label1_leaf == True and label2_leaf == True:
|
| 195 |
+
return edit_distance(label1.replace("<leaf>", ""), label2.replace("<leaf>", ""))
|
| 196 |
+
elif label1_leaf == False and label2_leaf == True:
|
| 197 |
+
return 1 + len(label2.replace("<leaf>", ""))
|
| 198 |
+
elif label1_leaf == True and label2_leaf == False:
|
| 199 |
+
return 1 + len(label1.replace("<leaf>", ""))
|
| 200 |
+
else:
|
| 201 |
+
return int(label1 != label2)
|
| 202 |
+
|
| 203 |
+
@staticmethod
|
| 204 |
+
def insert_and_remove_cost(node: Node):
|
| 205 |
+
"""
|
| 206 |
+
Insert and remove cost for tree edit distance.
|
| 207 |
+
If leaf node, cost is length of label name.
|
| 208 |
+
Otherwise, 1
|
| 209 |
+
"""
|
| 210 |
+
label = node.label
|
| 211 |
+
if "<leaf>" in label:
|
| 212 |
+
return len(label.replace("<leaf>", ""))
|
| 213 |
+
else:
|
| 214 |
+
return 1
|
| 215 |
+
|
| 216 |
+
def normalize_dict(self, data: Union[Dict, List, Any]):
|
| 217 |
+
"""
|
| 218 |
+
Sort by value, while iterate over element if data is list
|
| 219 |
+
"""
|
| 220 |
+
if not data:
|
| 221 |
+
return {}
|
| 222 |
+
|
| 223 |
+
if isinstance(data, dict):
|
| 224 |
+
new_data = dict()
|
| 225 |
+
for key in sorted(data.keys(), key=lambda k: (len(k), k)):
|
| 226 |
+
value = self.normalize_dict(data[key])
|
| 227 |
+
if value:
|
| 228 |
+
if not isinstance(value, list):
|
| 229 |
+
value = [value]
|
| 230 |
+
new_data[key] = value
|
| 231 |
+
|
| 232 |
+
elif isinstance(data, list):
|
| 233 |
+
if all(isinstance(item, dict) for item in data):
|
| 234 |
+
new_data = []
|
| 235 |
+
for item in data:
|
| 236 |
+
item = self.normalize_dict(item)
|
| 237 |
+
if item:
|
| 238 |
+
new_data.append(item)
|
| 239 |
+
else:
|
| 240 |
+
new_data = [str(item).strip() for item in data if type(item) in {str, int, float} and str(item).strip()]
|
| 241 |
+
else:
|
| 242 |
+
new_data = [str(data).strip()]
|
| 243 |
+
|
| 244 |
+
return new_data
|
| 245 |
+
|
| 246 |
+
def cal_f1(self, preds: List[dict], answers: List[dict]):
|
| 247 |
+
"""
|
| 248 |
+
Calculate global F1 accuracy score (field-level, micro-averaged) by counting all true positives, false negatives and false positives
|
| 249 |
+
"""
|
| 250 |
+
total_tp, total_fn_or_fp = 0, 0
|
| 251 |
+
for pred, answer in zip(preds, answers):
|
| 252 |
+
pred, answer = self.flatten(self.normalize_dict(pred)), self.flatten(self.normalize_dict(answer))
|
| 253 |
+
for field in pred:
|
| 254 |
+
if field in answer:
|
| 255 |
+
total_tp += 1
|
| 256 |
+
answer.remove(field)
|
| 257 |
+
else:
|
| 258 |
+
total_fn_or_fp += 1
|
| 259 |
+
total_fn_or_fp += len(answer)
|
| 260 |
+
return total_tp / (total_tp + total_fn_or_fp / 2)
|
| 261 |
+
|
| 262 |
+
def construct_tree_from_dict(self, data: Union[Dict, List], node_name: str = None):
|
| 263 |
+
"""
|
| 264 |
+
Convert Dictionary into Tree
|
| 265 |
+
|
| 266 |
+
Example:
|
| 267 |
+
input(dict)
|
| 268 |
+
|
| 269 |
+
{
|
| 270 |
+
"menu": [
|
| 271 |
+
{"name" : ["cake"], "count" : ["2"]},
|
| 272 |
+
{"name" : ["juice"], "count" : ["1"]},
|
| 273 |
+
]
|
| 274 |
+
}
|
| 275 |
+
|
| 276 |
+
output(tree)
|
| 277 |
+
<root>
|
| 278 |
+
|
|
| 279 |
+
menu
|
| 280 |
+
/ \
|
| 281 |
+
<subtree> <subtree>
|
| 282 |
+
/ | | \
|
| 283 |
+
name count name count
|
| 284 |
+
/ | | \
|
| 285 |
+
<leaf>cake <leaf>2 <leaf>juice <leaf>1
|
| 286 |
+
"""
|
| 287 |
+
if node_name is None:
|
| 288 |
+
node_name = "<root>"
|
| 289 |
+
|
| 290 |
+
node = Node(node_name)
|
| 291 |
+
|
| 292 |
+
if isinstance(data, dict):
|
| 293 |
+
for key, value in data.items():
|
| 294 |
+
kid_node = self.construct_tree_from_dict(value, key)
|
| 295 |
+
node.addkid(kid_node)
|
| 296 |
+
elif isinstance(data, list):
|
| 297 |
+
if all(isinstance(item, dict) for item in data):
|
| 298 |
+
for item in data:
|
| 299 |
+
kid_node = self.construct_tree_from_dict(
|
| 300 |
+
item,
|
| 301 |
+
"<subtree>",
|
| 302 |
+
)
|
| 303 |
+
node.addkid(kid_node)
|
| 304 |
+
else:
|
| 305 |
+
for item in data:
|
| 306 |
+
node.addkid(Node(f"<leaf>{item}"))
|
| 307 |
+
else:
|
| 308 |
+
raise Exception(data, node_name)
|
| 309 |
+
return node
|
| 310 |
+
|
| 311 |
+
def cal_acc(self, pred: dict, answer: dict):
|
| 312 |
+
"""
|
| 313 |
+
Calculate normalized tree edit distance(nTED) based accuracy.
|
| 314 |
+
1) Construct tree from dict,
|
| 315 |
+
2) Get tree distance with insert/remove/update cost,
|
| 316 |
+
3) Divide distance with GT tree size (i.e., nTED),
|
| 317 |
+
4) Calculate nTED based accuracy. (= max(1 - nTED, 0 ).
|
| 318 |
+
"""
|
| 319 |
+
pred = self.construct_tree_from_dict(self.normalize_dict(pred))
|
| 320 |
+
answer = self.construct_tree_from_dict(self.normalize_dict(answer))
|
| 321 |
+
return max(
|
| 322 |
+
0,
|
| 323 |
+
1
|
| 324 |
+
- (
|
| 325 |
+
zss.distance(
|
| 326 |
+
pred,
|
| 327 |
+
answer,
|
| 328 |
+
get_children=zss.Node.get_children,
|
| 329 |
+
insert_cost=self.insert_and_remove_cost,
|
| 330 |
+
remove_cost=self.insert_and_remove_cost,
|
| 331 |
+
update_cost=self.update_cost,
|
| 332 |
+
return_operations=False,
|
| 333 |
+
)
|
| 334 |
+
/ zss.distance(
|
| 335 |
+
self.construct_tree_from_dict(self.normalize_dict({})),
|
| 336 |
+
answer,
|
| 337 |
+
get_children=zss.Node.get_children,
|
| 338 |
+
insert_cost=self.insert_and_remove_cost,
|
| 339 |
+
remove_cost=self.insert_and_remove_cost,
|
| 340 |
+
update_cost=self.update_cost,
|
| 341 |
+
return_operations=False,
|
| 342 |
+
)
|
| 343 |
+
),
|
| 344 |
+
)
|
images/belgium_2.PNG
ADDED
|
|
Git LFS Details
|
images/denmark_2.jpeg
ADDED
|
images/estonia.PNG
ADDED
|
|
Git LFS Details
|
images/guiana.PNG
ADDED
|
|
Git LFS Details
|
images/iraq.PNG
ADDED
|
|
Git LFS Details
|
images/ireland.PNG
ADDED
|
|
Git LFS Details
|
images/mali_2.PNG
ADDED
|
|
Git LFS Details
|
images/newzealand_4.PNG
ADDED
|
|
Git LFS Details
|
images/poland_3.PNG
ADDED
|
|
Git LFS Details
|
images/portugal_3.PNG
ADDED
|
|
Git LFS Details
|
images/singapore_3.PNG
ADDED
|
|
Git LFS Details
|
images/spain.PNG
ADDED
|
|
Git LFS Details
|
images/spain_3.PNG
ADDED
|
|
Git LFS Details
|
images/suriname.PNG
ADDED
|
|
Git LFS Details
|
images/switzerland_2.PNG
ADDED
|
|
Git LFS Details
|
images/switzerland_4.PNG
ADDED
|
|
Git LFS Details
|
images/thailand_5.PNG
ADDED
|
|
Git LFS Details
|
images/togo_2.PNG
ADDED
|
|
Git LFS Details
|
images/uk.PNG
ADDED
|
|
Git LFS Details
|
images/uk_3.PNG
ADDED
|
|
Git LFS Details
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8d1ac44133e20fc3af447c27598b241669b8aa475954bec445b37c85eae9c88a
|
| 3 |
+
size 858374659
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
donut-python
|
| 3 |
+
timm==0.6.13
|
| 4 |
+
transformers==4.25.1
|
| 5 |
+
gradio
|
| 6 |
+
Pillow
|
sentencepiece.bpe.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb9e3dce4c326195d08fc3dd0f7e2eee1da8595c847bf4c1a9c78b7a82d47e2d
|
| 3 |
+
size 1296245
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}, "additional_special_tokens": ["<s_INPUT_data>"]}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "cls_token": "<s>", "pad_token": "<pad>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sp_model_kwargs": {}, "from_slow": true, "name_or_path": "naver-clova-ix/donut-base", "processor_class": "DonutProcessor", "special_tokens_map_file": null, "tokenizer_file": "/root/.cache/huggingface/transformers/8dff5958cbdb9de4188d643398d5d92bebb82976ce97e6f741b4793e21600485.01bf49938a78cb9ef1792abc3a5829ec39a7887935548bf42fd8d76bf07f15d8", "tokenizer_class": "XLMRobertaTokenizer"}
|