Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Any, Callable, Dict, List, Optional, Union, Tuple | |
| import cv2 | |
| import PIL | |
| import numpy as np | |
| from PIL import Image | |
| import torch | |
| from torchvision import transforms | |
| from insightface.app import FaceAnalysis | |
| ### insight-face installation can be found at https://github.com/deepinsight/insightface | |
| from safetensors import safe_open | |
| from huggingface_hub.utils import validate_hf_hub_args | |
| from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline | |
| from .functions import insert_markers_to_prompt, masks_for_unique_values, apply_mask_to_raw_image, tokenize_and_mask_noun_phrases_ends, prepare_image_token_idx | |
| from .functions import ProjPlusModel, masks_for_unique_values | |
| from .attention import Consistent_IPAttProcessor, Consistent_AttProcessor, FacialEncoder | |
| from easydict import EasyDict as edict | |
| from huggingface_hub import hf_hub_download | |
| ### Model can be imported from https://github.com/zllrunning/face-parsing.PyTorch?tab=readme-ov-file | |
| ### We use the ckpt of 79999_iter.pth: https://drive.google.com/open?id=154JgKpzCPW82qINcVieuPH3fZ2e0P812 | |
| ### Thanks for the open source of face-parsing model. | |
| from .BiSeNet.model import BiSeNet | |
| import os | |
| PipelineImageInput = Union[ | |
| PIL.Image.Image, | |
| torch.FloatTensor, | |
| List[PIL.Image.Image], | |
| List[torch.FloatTensor], | |
| ] | |
| ### Download the pretrained model from huggingface and put it locally, then place the model in a local directory and specify the directory location. | |
| class ConsistentIDPipeline(StableDiffusionPipeline): | |
| # to() should be only called after all modules are loaded. | |
| def to( | |
| self, | |
| torch_device: Optional[Union[str, torch.device]] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ): | |
| super().to(torch_device, dtype=dtype) | |
| self.bise_net.to(torch_device, dtype=dtype) | |
| self.clip_encoder.to(torch_device, dtype=dtype) | |
| self.image_proj_model.to(torch_device, dtype=dtype) | |
| self.FacialEncoder.to(torch_device, dtype=dtype) | |
| # If the unet is not released, the ip_layers should be moved to the specified device and dtype. | |
| if not isinstance(self.unet, edict): | |
| self.ip_layers.to(torch_device, dtype=dtype) | |
| return self | |
| def load_ConsistentID_model( | |
| self, | |
| consistentID_weight_path: str, | |
| bise_net_weight_path: str, | |
| trigger_word_facial: str = '<|facial|>', | |
| # A CLIP ViT-H/14 model trained with the LAION-2B English subset of LAION-5B using OpenCLIP. | |
| # output dim: 1280. | |
| image_encoder_path: str = 'laion/CLIP-ViT-H-14-laion2B-s32B-b79K', | |
| torch_dtype = torch.float16, | |
| num_tokens = 4, | |
| lora_rank= 128, | |
| **kwargs, | |
| ): | |
| self.lora_rank = lora_rank | |
| self.torch_dtype = torch_dtype | |
| self.num_tokens = num_tokens | |
| self.set_ip_adapter() | |
| self.image_encoder_path = image_encoder_path | |
| self.clip_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path) | |
| self.clip_preprocessor = CLIPImageProcessor() | |
| self.id_image_processor = CLIPImageProcessor() | |
| self.crop_size = 512 | |
| # face_app: FaceAnalysis object | |
| self.face_app = FaceAnalysis(name="buffalo_l", root='models/insightface', | |
| providers=['CPUExecutionProvider']) | |
| # The original det_size=(640, 640) is too large and face_app often fails to detect faces. | |
| self.face_app.prepare(ctx_id=0, det_size=(512, 512)) | |
| if not os.path.exists(consistentID_weight_path): | |
| ### Download pretrained models | |
| hf_hub_download(repo_id="JackAILab/ConsistentID", repo_type="model", | |
| filename=os.path.basename(consistentID_weight_path), | |
| local_dir=os.path.dirname(consistentID_weight_path)) | |
| if not os.path.exists(bise_net_weight_path): | |
| hf_hub_download(repo_id="JackAILab/ConsistentID", | |
| filename=os.path.basename(bise_net_weight_path), | |
| local_dir=os.path.dirname(bise_net_weight_path)) | |
| bise_net = BiSeNet(n_classes = 19) | |
| bise_net.load_state_dict(torch.load(bise_net_weight_path, map_location="cpu")) | |
| bise_net.eval() | |
| self.bise_net = bise_net | |
| # Colors for all 20 parts | |
| self.part_colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], | |
| [255, 0, 85], [255, 0, 170], | |
| [0, 255, 0], [85, 255, 0], [170, 255, 0], | |
| [0, 255, 85], [0, 255, 170], | |
| [0, 0, 255], [85, 0, 255], [170, 0, 255], | |
| [0, 85, 255], [0, 170, 255], | |
| [255, 255, 0], [255, 255, 85], [255, 255, 170], | |
| [255, 0, 255], [255, 85, 255], [255, 170, 255], | |
| [0, 255, 255], [85, 255, 255], [170, 255, 255]] | |
| # image_proj_model maps 1280-dim OpenCLIP embeddings to 768-dim face prompt embeddings. | |
| self.image_proj_model = ProjPlusModel( | |
| cross_attention_dim=self.unet.config.cross_attention_dim, | |
| id_embeddings_dim=512, | |
| clip_embeddings_dim=self.clip_encoder.config.hidden_size, | |
| num_tokens=self.num_tokens, # 4 - inspirsed by IPAdapter and Midjourney | |
| ) | |
| self.FacialEncoder = FacialEncoder() | |
| if consistentID_weight_path.endswith(".safetensors"): | |
| state_dict = {"id_encoder": {}, "lora_weights": {}} | |
| with safe_open(consistentID_weight_path, framework="pt", device="cpu") as f: | |
| ### TODO safetensors add | |
| for key in f.keys(): | |
| if key.startswith("FacialEncoder."): | |
| state_dict["FacialEncoder"][key.replace("FacialEncoder.", "")] = f.get_tensor(key) | |
| elif key.startswith("image_proj."): | |
| state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) | |
| else: | |
| state_dict = torch.load(consistentID_weight_path, map_location="cpu") | |
| self.trigger_word_facial = trigger_word_facial | |
| self.FacialEncoder.load_state_dict(state_dict["FacialEncoder"], strict=True) | |
| self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=True) | |
| self.ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values()) | |
| self.ip_layers.load_state_dict(state_dict["adapter_modules"], strict=True) | |
| print(f"Successfully loaded weights from checkpoint") | |
| # Add trigger word token | |
| if self.tokenizer is not None: | |
| self.tokenizer.add_tokens([self.trigger_word_facial], special_tokens=True) | |
| def set_ip_adapter(self): | |
| unet = self.unet | |
| attn_procs = {} | |
| for name in unet.attn_processors.keys(): | |
| cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
| if name.startswith("mid_block"): | |
| hidden_size = unet.config.block_out_channels[-1] | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = unet.config.block_out_channels[block_id] | |
| if cross_attention_dim is None: | |
| attn_procs[name] = Consistent_AttProcessor( | |
| hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=self.lora_rank, | |
| ) | |
| else: | |
| attn_procs[name] = Consistent_IPAttProcessor( | |
| hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=self.lora_rank, num_tokens=self.num_tokens, | |
| ) | |
| unet.set_attn_processor(attn_procs) | |
| # parsed_image_parts2 is a batched tensor of parsed_image_parts with bs=1. It only contains the facial areas of one input image. | |
| # clip_encoder maps image parts to image-space diffusion prompts. | |
| # Then the facial class token embeddings are replaced with the fused (multi_facial_embeds, prompt_embeds[class_tokens_mask]). | |
| def extract_local_facial_embeds(self, prompt_embeds, uncond_prompt_embeds, parsed_image_parts2, | |
| facial_token_masks, valid_facial_token_idx_mask, calc_uncond=True): | |
| hidden_states = [] | |
| uncond_hidden_states = [] | |
| for parsed_image_parts in parsed_image_parts2: | |
| hidden_state = self.clip_encoder(parsed_image_parts.to(self.device, dtype=self.torch_dtype), output_hidden_states=True).hidden_states[-2] | |
| uncond_hidden_state = self.clip_encoder(torch.zeros_like(parsed_image_parts, dtype=self.torch_dtype).to(self.device), output_hidden_states=True).hidden_states[-2] | |
| hidden_states.append(hidden_state) | |
| uncond_hidden_states.append(uncond_hidden_state) | |
| multi_facial_embeds = torch.stack(hidden_states) | |
| uncond_multi_facial_embeds = torch.stack(uncond_hidden_states) | |
| # conditional prompt. | |
| # FacialEncoder maps multi_facial_embeds to facial ID embeddings, and replaces the class tokens in prompt_embeds | |
| # with the fused (facial ID embeddings, prompt_embeds[class_tokens_mask]). | |
| # multi_facial_embeds: [1, 5, 257, 1280]. | |
| facial_prompt_embeds = self.FacialEncoder(prompt_embeds, multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask) | |
| if not calc_uncond: | |
| return facial_prompt_embeds, None | |
| # unconditional prompt. | |
| uncond_facial_prompt_embeds = self.FacialEncoder(uncond_prompt_embeds, uncond_multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask) | |
| return facial_prompt_embeds, uncond_facial_prompt_embeds | |
| # Extrat OpenCLIP embeddings from the input image and map them to face prompt embeddings. | |
| def extract_global_id_embeds(self, face_image_obj, s_scale=1.0, shortcut=False): | |
| clip_image_ts = self.clip_preprocessor(images=face_image_obj, return_tensors="pt").pixel_values | |
| clip_image_ts = clip_image_ts.to(self.device, dtype=self.torch_dtype) | |
| clip_image_embeds = self.clip_encoder(clip_image_ts, output_hidden_states=True).hidden_states[-2] | |
| uncond_clip_image_embeds = self.clip_encoder(torch.zeros_like(clip_image_ts), output_hidden_states=True).hidden_states[-2] | |
| faceid_embeds = self.extract_faceid(face_image_obj) | |
| faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype) | |
| # image_proj_model maps 1280-dim OpenCLIP embeddings to 768-dim face prompt embeddings. | |
| # clip_image_embeds are used as queries to transform faceid_embeds. | |
| # faceid_embeds -> kv, clip_image_embeds -> q | |
| global_id_embeds = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale) | |
| uncond_global_id_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale) | |
| return global_id_embeds, uncond_global_id_embeds | |
| def set_scale(self, scale): | |
| for attn_processor in self.pipe.unet.attn_processors.values(): | |
| if isinstance(attn_processor, Consistent_IPAttProcessor): | |
| attn_processor.scale = scale | |
| def extract_faceid(self, face_image_obj): | |
| faceid_image = np.array(face_image_obj) | |
| faces = self.face_app.get(faceid_image) | |
| if faces==[]: | |
| faceid_embeds = torch.zeros_like(torch.empty((1, 512))) | |
| else: | |
| faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) | |
| return faceid_embeds | |
| def parse_face_mask(self, raw_image_refer): | |
| to_tensor = transforms.Compose([ | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), | |
| ]) | |
| to_pil = transforms.ToPILImage() | |
| with torch.no_grad(): | |
| image = raw_image_refer.resize((512, 512), Image.BILINEAR) | |
| image_resize_PIL = image | |
| img = to_tensor(image) | |
| img = torch.unsqueeze(img, 0) | |
| img = img.to(self.device, dtype=self.torch_dtype) | |
| out = self.bise_net(img)[0] | |
| parsing_anno = out.squeeze(0).cpu().numpy().argmax(0) | |
| im = np.array(image_resize_PIL) | |
| vis_im = im.copy().astype(np.uint8) | |
| stride=1 | |
| vis_parsing_anno = parsing_anno.copy().astype(np.uint8) | |
| vis_parsing_anno = cv2.resize(vis_parsing_anno, None, fx=stride, fy=stride, interpolation=cv2.INTER_NEAREST) | |
| vis_parsing_anno_color = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1], 3)) + 255 | |
| num_of_class = np.max(vis_parsing_anno) | |
| for pi in range(1, num_of_class + 1): # num_of_class=17 pi=1~16 | |
| index = np.where(vis_parsing_anno == pi) | |
| vis_parsing_anno_color[index[0], index[1], :] = self.part_colors[pi] | |
| vis_parsing_anno_color = vis_parsing_anno_color.astype(np.uint8) | |
| vis_parsing_anno_color = cv2.addWeighted(cv2.cvtColor(vis_im, cv2.COLOR_RGB2BGR), 0.4, vis_parsing_anno_color, 0.6, 0) | |
| return vis_parsing_anno_color, vis_parsing_anno | |
| def extract_facemask(self, input_image_obj): | |
| vis_parsing_anno_color, vis_parsing_anno = self.parse_face_mask(input_image_obj) | |
| parsing_mask_list = masks_for_unique_values(vis_parsing_anno) | |
| key_parsing_mask_dict = {} | |
| key_list = ["Face", "Left_Ear", "Right_Ear", "Left_Eye", "Right_Eye", "Nose", "Upper_Lip", "Lower_Lip"] | |
| processed_keys = set() | |
| for key, mask_image in parsing_mask_list.items(): | |
| if key in key_list: | |
| if "_" in key: | |
| prefix = key.split("_")[1] | |
| if prefix in processed_keys: | |
| continue | |
| else: | |
| key_parsing_mask_dict[key] = mask_image | |
| processed_keys.add(prefix) | |
| key_parsing_mask_dict[key] = mask_image | |
| return key_parsing_mask_dict, vis_parsing_anno_color | |
| def augment_prompt_with_trigger_word( | |
| self, | |
| prompt: str, | |
| face_caption: str, | |
| key_parsing_mask_dict = None, | |
| facial_token = "<|facial|>", | |
| max_num_facials = 5, | |
| num_id_images: int = 1, | |
| device: Optional[torch.device] = None, | |
| ): | |
| device = device or self._execution_device | |
| # face_caption_align: 'The person has one nose <|facial|>, two ears <|facial|>, two eyes <|facial|>, and a mouth <|facial|>, ' | |
| face_caption_align, key_parsing_mask_dict_align = insert_markers_to_prompt(face_caption, key_parsing_mask_dict) | |
| prompt_face = prompt + " Detail: " + face_caption_align | |
| max_text_length=330 | |
| if len(self.tokenizer(prompt_face, max_length=self.tokenizer.model_max_length, | |
| padding="max_length", truncation=False, return_tensors="pt").input_ids[0]) != 77: | |
| # Put face_caption_align at the beginning of the prompt, so that the original prompt is truncated, | |
| # but the face_caption_align is well kept. | |
| prompt_face = "Detail: " + face_caption_align + " Caption:" + prompt | |
| # Remove "<|facial|>" from prompt_face. | |
| # augmented_prompt: 'A person, police officer, half body shot Detail: | |
| # The person has one nose , two ears , two eyes , and a mouth , ' | |
| augmented_prompt = prompt_face.replace("<|facial|>", "") | |
| tokenizer = self.tokenizer | |
| facial_token_id = tokenizer.convert_tokens_to_ids(facial_token) | |
| image_token_id = None | |
| # image_token_id: the token id of "<|image|>". Disabled, as it's set to None. | |
| # facial_token_id: the token id of "<|facial|>". | |
| clean_input_id, image_token_mask, facial_token_mask = \ | |
| tokenize_and_mask_noun_phrases_ends(prompt_face, image_token_id, facial_token_id, tokenizer) | |
| image_token_idx, image_token_idx_mask, facial_token_idx, facial_token_idx_mask = \ | |
| prepare_image_token_idx(image_token_mask, facial_token_mask, num_id_images, max_num_facials) | |
| return augmented_prompt, clean_input_id, key_parsing_mask_dict_align, facial_token_mask, facial_token_idx, facial_token_idx_mask | |
| def extract_parsed_image_parts(self, input_image_obj, key_parsing_mask_dict, image_size=512, max_num_facials=5): | |
| facial_masks = [] | |
| parsed_image_parts = [] | |
| key_masked_raw_images_dict = {} | |
| transform_mask = transforms.Compose([transforms.CenterCrop(size=image_size), transforms.ToTensor(),]) | |
| clip_preprocessor = CLIPImageProcessor() | |
| num_facial_part = len(key_parsing_mask_dict) | |
| for key in key_parsing_mask_dict: | |
| key_mask=key_parsing_mask_dict[key] | |
| facial_masks.append(transform_mask(key_mask)) | |
| key_masked_raw_image = apply_mask_to_raw_image(input_image_obj, key_mask) | |
| key_masked_raw_images_dict[key] = key_masked_raw_image | |
| # clip_preprocessor normalizes key_masked_raw_image, so that (masked) zero pixels become non-zero. | |
| # It also resizes the image to 224x224. | |
| parsed_image_part = clip_preprocessor(images=key_masked_raw_image, return_tensors="pt").pixel_values | |
| parsed_image_parts.append(parsed_image_part) | |
| padding_ficial_clip_image = torch.zeros_like(torch.zeros([1, 3, 224, 224])) | |
| padding_ficial_mask = torch.zeros_like(torch.zeros([1, image_size, image_size])) | |
| if num_facial_part < max_num_facials: | |
| parsed_image_parts += [ torch.zeros_like(padding_ficial_clip_image) for _ in range(max_num_facials - num_facial_part) ] | |
| facial_masks += [ torch.zeros_like(padding_ficial_mask) for _ in range(max_num_facials - num_facial_part) ] | |
| parsed_image_parts = torch.stack(parsed_image_parts, dim=1).squeeze(0) | |
| facial_masks = torch.stack(facial_masks, dim=0).squeeze(dim=1) | |
| return parsed_image_parts, facial_masks, key_masked_raw_images_dict | |
| # Release the unet/vae/text_encoder to save memory. | |
| def release_components(self, released_components=["unet", "vae", "text_encoder"]): | |
| if "unet" in released_components: | |
| unet = edict() | |
| # Only keep the config and in_channels attributes that are used in the pipeline. | |
| unet.config = self.unet.config | |
| self.unet = unet | |
| if "vae" in released_components: | |
| self.vae = None | |
| if "text_encoder" in released_components: | |
| self.text_encoder = None | |
| # input_subj_image_obj: an Image object. | |
| def extract_double_id_prompt_embeds(self, prompt, negative_prompt, input_subj_image_obj, device, calc_uncond=True): | |
| face_caption = "The person has one nose, two eyes, two ears, and a mouth." | |
| key_parsing_mask_dict, vis_parsing_anno_color = self.extract_facemask(input_subj_image_obj) | |
| augmented_prompt, clean_input_id, key_parsing_mask_dict_align, \ | |
| facial_token_mask, facial_token_idx, facial_token_idx_mask \ | |
| = self.augment_prompt_with_trigger_word( | |
| prompt = prompt, | |
| face_caption = face_caption, | |
| key_parsing_mask_dict=key_parsing_mask_dict, | |
| device=device, | |
| max_num_facials = 5, | |
| num_id_images = 1 | |
| ) | |
| text_embeds, uncond_text_embeds = self.encode_prompt( | |
| augmented_prompt, | |
| device=device, | |
| num_images_per_prompt=1, | |
| do_classifier_free_guidance=calc_uncond, | |
| negative_prompt=negative_prompt, | |
| ) | |
| # 5. Prepare the input ID images | |
| # global_id_embeds: [1, 4, 768] | |
| # extract_global_id_embeds() extrats OpenCLIP embeddings from the input image and map them to global face prompt embeddings. | |
| global_id_embeds, uncond_global_id_embeds = \ | |
| self.extract_global_id_embeds(face_image_obj=input_subj_image_obj, s_scale=1.0, shortcut=False) | |
| # parsed_image_parts: [5, 3, 224, 224]. 5 parts, each part is a 3-channel 224x224 image (resized by CLIP Preprocessor). | |
| parsed_image_parts, facial_masks, key_masked_raw_images_dict = \ | |
| self.extract_parsed_image_parts(input_subj_image_obj, key_parsing_mask_dict_align, image_size=512, max_num_facials=5) | |
| parsed_image_parts2 = parsed_image_parts.unsqueeze(0).to(device, dtype=self.torch_dtype) | |
| facial_token_mask = facial_token_mask.to(device) | |
| facial_token_idx_mask = facial_token_idx_mask.to(device) | |
| # key_masked_raw_images_dict: ['Right_Eye', 'Right_Ear', 'Nose', 'Upper_Lip'] | |
| # for key in key_masked_raw_images_dict: | |
| # key_masked_raw_images_dict[key].save(f"{key}.png") | |
| # 6. Get the update text embedding | |
| # parsed_image_parts2: the facial areas of the input image | |
| # extract_local_facial_embeds() maps parsed_image_parts2 to multi_facial_embeds, and then replaces the class tokens in prompt_embeds | |
| # with the fused (id_embeds, prompt_embeds[class_tokens_mask]) whose indices are specified by class_tokens_mask. | |
| # parsed_image_parts2: [1, 5, 3, 224, 224] | |
| text_local_id_embeds, uncond_text_local_id_embeds = \ | |
| self.extract_local_facial_embeds(text_embeds, uncond_text_embeds, \ | |
| parsed_image_parts2, facial_token_mask, facial_token_idx_mask, | |
| calc_uncond=calc_uncond) | |
| # text_global_id_embeds, text_local_global_id_embeds: [1, 81, 768] | |
| # text_local_id_embeds: [1, 77, 768], only differs with text_embeds on 4 ID embeddings, and is identical | |
| # to text_embeds on the rest 73 tokens. | |
| text_global_id_embeds = torch.cat([text_embeds, global_id_embeds], dim=1) | |
| text_local_global_id_embeds = torch.cat([text_local_id_embeds, global_id_embeds], dim=1) | |
| if calc_uncond: | |
| uncond_text_global_id_embeds = torch.cat([uncond_text_local_id_embeds, uncond_global_id_embeds], dim=1) | |
| coarse_prompt_embeds = torch.cat([uncond_text_global_id_embeds, text_global_id_embeds], dim=0) | |
| fine_prompt_embeds = torch.cat([uncond_text_global_id_embeds, text_local_global_id_embeds], dim=0) | |
| else: | |
| coarse_prompt_embeds = text_global_id_embeds | |
| fine_prompt_embeds = text_local_global_id_embeds | |
| # fine_prompt_embeds: the conditional part is | |
| # (text_global_id_embeds + text_local_global_id_embeds) / 2. | |
| fine_prompt_embeds = (coarse_prompt_embeds + fine_prompt_embeds) / 2 | |
| return coarse_prompt_embeds, fine_prompt_embeds | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 5.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| original_size: Optional[Tuple[int, int]] = None, | |
| target_size: Optional[Tuple[int, int]] = None, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| input_subj_image_objs: PipelineImageInput = None, | |
| start_merge_step: int = 0, | |
| ): | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| original_size = original_size or (height, width) | |
| target_size = target_size or (height, width) | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| callback_steps, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| do_classifier_free_guidance = guidance_scale >= 1.0 | |
| assert do_classifier_free_guidance | |
| if input_subj_image_objs is not None: | |
| if not isinstance(input_subj_image_objs, list): | |
| input_subj_image_objs = [input_subj_image_objs] | |
| # 3. Encode input prompt | |
| coarse_prompt_embeds, fine_prompt_embeds = \ | |
| self.extract_double_id_prompt_embeds(prompt, negative_prompt, input_subj_image_objs[0], device) | |
| else: | |
| # Replace the coarse_prompt_embeds and fine_prompt_embeds with the input prompt_embeds. | |
| # This is used when prompt_embeds are computed in advance. | |
| cfg_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| coarse_prompt_embeds = cfg_prompt_embeds | |
| fine_prompt_embeds = cfg_prompt_embeds | |
| # 7. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 8. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| self.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # {'eta': 0.0, 'generator': None}. eta is 0 for DDIM. | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| cross_attention_kwargs = {} | |
| # 9. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| latent_model_input = ( | |
| torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| ) | |
| # DDIM doesn't scale latent_model_input. | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| if i <= start_merge_step: | |
| current_prompt_embeds = coarse_prompt_embeds | |
| else: | |
| current_prompt_embeds = fine_prompt_embeds | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=current_prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| else: | |
| assert 0, "Not Implemented" | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step( | |
| noise_pred, t, latents, **extra_step_kwargs | |
| ).prev_sample | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or \ | |
| ( (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 ): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| if output_type == "latent": | |
| image = latents | |
| elif output_type == "pil": | |
| # 9.1 Post-processing | |
| image = self.decode_latents(latents) | |
| # 9.3 Convert to PIL | |
| image = self.numpy_to_pil(image) | |
| else: | |
| # 9.1 Post-processing | |
| image = self.decode_latents(latents) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| if not return_dict: | |
| return (image, None) | |
| return StableDiffusionPipelineOutput( | |
| images=image, nsfw_content_detected=None | |
| ) | |