Spaces:
Sleeping
Sleeping
| import transformers | |
| from transformers import pipeline | |
| def generate(idea): | |
| """Generates code based on a given idea using the bigscience/T0_3B model. | |
| Args: | |
| idea: The idea for the code to be generated. | |
| Returns: | |
| The generated code as a string. | |
| """ | |
| # Load the code generation model | |
| model_name = "bigscience/T0_3B" # Use a model that works for code generation | |
| model = transformers.AutoModelForCausalLM.from_pretrained(model_name) | |
| tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) | |
| # Generate the code | |
| # Generate the code | |
| input_text = f""" | |
| # Idea: {idea} | |
| # Code: | |
| """ | |
| input_ids = tokenizer.encode(input_text, return_tensors="pt") | |
| output_sequences = model.generate( | |
| input_ids=input_ids, | |
| max_length=1024, | |
| num_return_sequences=1, | |
| no_repeat_ngram_size=2, | |
| early_stopping=True, | |
| temperature=0.7, # Adjust temperature for creativity | |
| top_k=50, # Adjust top_k for diversity | |
| ) | |
| generated_code = tokenizer.decode(output_sequences[0], skip_special_tokens=True) | |
| # Remove the prompt and formatting | |
| generated_code = generated_code.split("\n# Code:")[1].strip() | |
| return generated_code | |
| # Example usage | |
| idea = "Write a Python function to calculate the factorial of a number" | |
| code = generate(idea) | |
| print(code) |