Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
| import torch | |
| from transformers import ( | |
| CLIPTextModelWithProjection, | |
| CLIPTokenizer, | |
| T5EncoderModel, | |
| T5TokenizerFast, | |
| ) | |
| from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
| from diffusers.loaders import FromSingleFileMixin, SD3LoraLoaderMixin | |
| from diffusers.models.autoencoders import AutoencoderKL | |
| # from diffusers.models.controlnet_sd3 import SD3ControlNetModel, SD3MultiControlNetModel | |
| # from diffusers.models.transformers import SD3Transformer2DModel | |
| # from model_SD3.controlnet_sd3 import SD3ControlNetModel, SD3MultiControlNetModel | |
| from model_dit4sr.transformer_sd3 import SD3Transformer2DModel | |
| from diffusers.schedulers import FlowMatchEulerDiscreteScheduler | |
| from diffusers.utils import ( | |
| USE_PEFT_BACKEND, | |
| is_torch_xla_available, | |
| logging, | |
| replace_example_docstring, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.pipelines.stable_diffusion_3.pipeline_output import StableDiffusion3PipelineOutput | |
| from utils.vaehook import VAEHook | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import StableDiffusion3ControlNetPipeline | |
| >>> from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel | |
| >>> from diffusers.utils import load_image | |
| >>> controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16) | |
| >>> pipe = StableDiffusion3ControlNetPipeline.from_pretrained( | |
| ... "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16 | |
| ... ) | |
| >>> pipe.to("cuda") | |
| >>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg") | |
| >>> prompt = "A girl holding a sign that says InstantX" | |
| >>> image = pipe(prompt, control_image=control_image, controlnet_conditioning_scale=0.7).images[0] | |
| >>> image.save("sd3.png") | |
| ``` | |
| """ | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class StableDiffusion3ControlNetPipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin): | |
| r""" | |
| Args: | |
| transformer ([`SD3Transformer2DModel`]): | |
| Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. | |
| scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
| A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModelWithProjection`]): | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), | |
| specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant, | |
| with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size` | |
| as its dimension. | |
| text_encoder_2 ([`CLIPTextModelWithProjection`]): | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), | |
| specifically the | |
| [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) | |
| variant. | |
| text_encoder_3 ([`T5EncoderModel`]): | |
| Frozen text-encoder. Stable Diffusion 3 uses | |
| [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the | |
| [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| tokenizer_2 (`CLIPTokenizer`): | |
| Second Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| tokenizer_3 (`T5TokenizerFast`): | |
| Tokenizer of class | |
| [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). | |
| controlnet ([`SD3ControlNetModel`] or `List[SD3ControlNetModel]` or [`SD3MultiControlNetModel`]): | |
| Provides additional conditioning to the `unet` during the denoising process. If you set multiple | |
| ControlNets as a list, the outputs from each ControlNet are added together to create one combined | |
| additional conditioning. | |
| """ | |
| model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->transformer->vae" | |
| _optional_components = [] | |
| _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"] | |
| def __init__( | |
| self, | |
| transformer: SD3Transformer2DModel, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModelWithProjection, | |
| tokenizer: CLIPTokenizer, | |
| text_encoder_2: CLIPTextModelWithProjection, | |
| text_encoder_3: T5EncoderModel, | |
| tokenizer_3: T5TokenizerFast, | |
| tokenizer_2: CLIPTokenizer, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| text_encoder_3=text_encoder_3, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| tokenizer_3=tokenizer_3, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| ) | |
| self.vae_scale_factor = ( | |
| 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 | |
| ) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.tokenizer_max_length = ( | |
| self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 | |
| ) | |
| self.default_sample_size = ( | |
| self.transformer.config.sample_size | |
| if hasattr(self, "transformer") and self.transformer is not None | |
| else 128 | |
| ) | |
| def _init_tiled_vae(self, | |
| encoder_tile_size = 256, | |
| decoder_tile_size = 256, | |
| fast_decoder = False, | |
| fast_encoder = False, | |
| color_fix = False, | |
| vae_to_gpu = True): | |
| # save original forward (only once) | |
| if not hasattr(self.vae.encoder, 'original_forward'): | |
| setattr(self.vae.encoder, 'original_forward', self.vae.encoder.forward) | |
| if not hasattr(self.vae.decoder, 'original_forward'): | |
| setattr(self.vae.decoder, 'original_forward', self.vae.decoder.forward) | |
| encoder = self.vae.encoder | |
| decoder = self.vae.decoder | |
| self.vae.encoder.forward = VAEHook( | |
| encoder, encoder_tile_size, is_decoder=False, fast_decoder=fast_decoder, fast_encoder=fast_encoder, color_fix=color_fix, to_gpu=vae_to_gpu) | |
| self.vae.decoder.forward = VAEHook( | |
| decoder, decoder_tile_size, is_decoder=True, fast_decoder=fast_decoder, fast_encoder=fast_encoder, color_fix=color_fix, to_gpu=vae_to_gpu) | |
| # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_t5_prompt_embeds | |
| def _get_t5_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| num_images_per_prompt: int = 1, | |
| max_sequence_length: int = 256, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ): | |
| device = device or self._execution_device | |
| dtype = dtype or self.text_encoder.dtype | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| if self.text_encoder_3 is None: | |
| return torch.zeros( | |
| ( | |
| batch_size * num_images_per_prompt, | |
| self.tokenizer_max_length, | |
| self.transformer.config.joint_attention_dim, | |
| ), | |
| device=device, | |
| dtype=dtype, | |
| ) | |
| text_inputs = self.tokenizer_3( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_sequence_length, | |
| truncation=True, | |
| add_special_tokens=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because `max_sequence_length` is set to " | |
| f" {max_sequence_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0] | |
| dtype = self.text_encoder_3.dtype | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| _, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| return prompt_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_clip_prompt_embeds | |
| def _get_clip_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]], | |
| num_images_per_prompt: int = 1, | |
| device: Optional[torch.device] = None, | |
| clip_skip: Optional[int] = None, | |
| clip_model_index: int = 0, | |
| ): | |
| device = device or self._execution_device | |
| clip_tokenizers = [self.tokenizer, self.tokenizer_2] | |
| clip_text_encoders = [self.text_encoder, self.text_encoder_2] | |
| tokenizer = clip_tokenizers[clip_model_index] | |
| text_encoder = clip_text_encoders[clip_model_index] | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| text_inputs = tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer_max_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) | |
| pooled_prompt_embeds = prompt_embeds[0] | |
| if clip_skip is None: | |
| prompt_embeds = prompt_embeds.hidden_states[-2] | |
| else: | |
| prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| _, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1) | |
| return prompt_embeds, pooled_prompt_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_prompt | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| prompt_2: Union[str, List[str]], | |
| prompt_3: Union[str, List[str]], | |
| device: Optional[torch.device] = None, | |
| num_images_per_prompt: int = 1, | |
| do_classifier_free_guidance: bool = True, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| negative_prompt_3: Optional[Union[str, List[str]]] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| clip_skip: Optional[int] = None, | |
| max_sequence_length: int = 256, | |
| lora_scale: Optional[float] = None, | |
| ): | |
| r""" | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| used in all text-encoders | |
| prompt_3 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is | |
| used in all text-encoders | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| negative_prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
| `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders. | |
| negative_prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and | |
| `text_encoder_3`. If not defined, `negative_prompt` is used in both text-encoders | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
| input argument. | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| lora_scale (`float`, *optional*): | |
| A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
| """ | |
| device = device or self._execution_device | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| # dynamically adjust the LoRA scale | |
| if self.text_encoder is not None and USE_PEFT_BACKEND: | |
| scale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None and USE_PEFT_BACKEND: | |
| scale_lora_layers(self.text_encoder_2, lora_scale) | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| if prompt is not None: | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| prompt_2 = prompt_2 or prompt | |
| prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | |
| prompt_3 = prompt_3 or prompt | |
| prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3 | |
| prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds( | |
| prompt=prompt, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| clip_skip=clip_skip, | |
| clip_model_index=0, | |
| ) | |
| prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds( | |
| prompt=prompt_2, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| clip_skip=clip_skip, | |
| clip_model_index=1, | |
| ) | |
| clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1) | |
| t5_prompt_embed = self._get_t5_prompt_embeds( | |
| prompt=prompt_3, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| clip_prompt_embeds = torch.nn.functional.pad( | |
| clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1]) | |
| ) | |
| prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2) | |
| pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1) | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| negative_prompt = negative_prompt or "" | |
| negative_prompt_2 = negative_prompt_2 or negative_prompt | |
| negative_prompt_3 = negative_prompt_3 or negative_prompt | |
| # normalize str to list | |
| negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt | |
| negative_prompt_2 = ( | |
| batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 | |
| ) | |
| negative_prompt_3 = ( | |
| batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3 | |
| ) | |
| if prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds( | |
| negative_prompt, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| clip_skip=None, | |
| clip_model_index=0, | |
| ) | |
| negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds( | |
| negative_prompt_2, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| clip_skip=None, | |
| clip_model_index=1, | |
| ) | |
| negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1) | |
| t5_negative_prompt_embed = self._get_t5_prompt_embeds( | |
| prompt=negative_prompt_3, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| negative_clip_prompt_embeds = torch.nn.functional.pad( | |
| negative_clip_prompt_embeds, | |
| (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]), | |
| ) | |
| negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2) | |
| negative_pooled_prompt_embeds = torch.cat( | |
| [negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1 | |
| ) | |
| if self.text_encoder is not None: | |
| if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None: | |
| if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder_2, lora_scale) | |
| return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | |
| def check_inputs( | |
| self, | |
| prompt, | |
| prompt_2, | |
| prompt_3, | |
| height, | |
| width, | |
| negative_prompt=None, | |
| negative_prompt_2=None, | |
| negative_prompt_3=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| pooled_prompt_embeds=None, | |
| negative_pooled_prompt_embeds=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| max_sequence_length=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt_2 is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt_3 is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | |
| raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | |
| elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)): | |
| raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| elif negative_prompt_2 is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| elif negative_prompt_3 is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if prompt_embeds is not None and pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
| ) | |
| if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." | |
| ) | |
| if max_sequence_length is not None and max_sequence_length > 512: | |
| raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") | |
| # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_latents | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| ): | |
| if latents is not None: | |
| return latents.to(device=device, dtype=dtype) | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| int(height) // self.vae_scale_factor, | |
| int(width) // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| return latents | |
| def prepare_image( | |
| self, | |
| image, | |
| width, | |
| height, | |
| batch_size, | |
| num_images_per_prompt, | |
| device, | |
| dtype, | |
| do_classifier_free_guidance=False, | |
| guess_mode=False, | |
| ): | |
| if isinstance(image, torch.Tensor): | |
| pass | |
| else: | |
| image = self.image_processor.preprocess(image, height=height, width=width) | |
| image_batch_size = image.shape[0] | |
| if image_batch_size == 1: | |
| repeat_by = batch_size | |
| else: | |
| # image batch size is the same as prompt batch size | |
| repeat_by = num_images_per_prompt | |
| image = image.repeat_interleave(repeat_by, dim=0) | |
| image = image.to(device=device, dtype=dtype) | |
| if do_classifier_free_guidance and not guess_mode: | |
| image = torch.cat([image] * 2) | |
| return image | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def clip_skip(self): | |
| return self._clip_skip | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 | |
| def joint_attention_kwargs(self): | |
| return self._joint_attention_kwargs | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def interrupt(self): | |
| return self._interrupt | |
| def _gaussian_weights(self, tile_width, tile_height, nbatches): | |
| """Generates a gaussian mask of weights for tile contributions""" | |
| from numpy import pi, exp, sqrt | |
| import numpy as np | |
| latent_width = tile_width | |
| latent_height = tile_height | |
| var = 0.01 | |
| midpoint = (latent_width - 1) / 2 # -1 because index goes from 0 to latent_width - 1 | |
| x_probs = [exp(-(x-midpoint)*(x-midpoint)/(latent_width*latent_width)/(2*var)) / sqrt(2*pi*var) for x in range(latent_width)] | |
| midpoint = latent_height / 2 | |
| y_probs = [exp(-(y-midpoint)*(y-midpoint)/(latent_height*latent_height)/(2*var)) / sqrt(2*pi*var) for y in range(latent_height)] | |
| weights = np.outer(y_probs, x_probs) | |
| return torch.tile(torch.tensor(weights, device=self.device), (nbatches, 16, 1, 1)) | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| prompt_3: Optional[Union[str, List[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 7.0, | |
| control_image: PipelineImageInput = None, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| negative_prompt_3: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| clip_skip: Optional[int] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 256, | |
| start_point = 'noise', | |
| latent_tiled_size=320, | |
| latent_tiled_overlap=4, | |
| args=None | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| will be used instead | |
| prompt_3 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is | |
| will be used instead | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
| in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
| passed will be used. Must be in descending order. | |
| guidance_scale (`float`, *optional*, defaults to 5.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): | |
| The percentage of total steps at which the ControlNet starts applying. | |
| control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): | |
| The percentage of total steps at which the ControlNet stops applying. | |
| control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: | |
| `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): | |
| The ControlNet input condition to provide guidance to the `unet` for generation. If the type is | |
| specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted | |
| as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or | |
| width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`, | |
| images must be passed as a list such that each element of the list can be correctly batched for input | |
| to a single ControlNet. | |
| controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): | |
| The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added | |
| to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set | |
| the corresponding scale as a list. | |
| controlnet_pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): | |
| Embeddings projected from the embeddings of controlnet input conditions. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| negative_prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
| `text_encoder_2`. If not defined, `negative_prompt` is used instead | |
| negative_prompt_3 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and | |
| `text_encoder_3`. If not defined, `negative_prompt` is used instead | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
| input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead | |
| of a plain tuple. | |
| joint_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`. | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a | |
| `tuple`. When returning a tuple, the first element is a list with the generated images. | |
| """ | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| prompt_3, | |
| height, | |
| width, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| negative_prompt_3=negative_prompt_3, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._clip_skip = clip_skip | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| dtype = self.transformer.dtype | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_3=prompt_3, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| negative_prompt_3=negative_prompt_3, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| device=device, | |
| clip_skip=self.clip_skip, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| control_image = self.prepare_image( | |
| image=control_image, | |
| width=width, | |
| height=height, | |
| batch_size=batch_size * num_images_per_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| dtype=dtype, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| guess_mode=False, | |
| ) | |
| # control_image = (control_image + 1.0) / 2.0 | |
| height, width = control_image.shape[-2:] | |
| # image_embedding = torch.nn.functional.interpolate(control_image, (512, 512)) | |
| # image_embedding = self.vae.encode(image_embedding).latent_dist.sample() | |
| # image_embedding = image_embedding * self.vae.config.scaling_factor | |
| # image_embedding = image_embedding.view(image_embedding.shape[0], 16, -1) | |
| # # pad_tensor = torch.zeros(control_image.shape[0], 77 - image_embedding.shape[1], 4096).to(image_embedding.device, dtype=dtype) | |
| # # image_embedding = torch.cat([image_embedding, pad_tensor], dim=1) | |
| # prompt_embeds = torch.cat([prompt_embeds, image_embedding], dim=-2) | |
| control_image = self.vae.encode(control_image).latent_dist.sample() | |
| control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
| # 4. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self._num_timesteps = len(timesteps) | |
| # 5. Prepare latent variables | |
| # num_channels_latents = self.transformer.config.in_channels | |
| num_channels_latents = 16 | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # control_image = torch.cat([latents, control_image], dim=0) | |
| # 6. Prepare the start point | |
| if start_point == 'noise': | |
| latents = latents | |
| elif start_point == 'lr': # LRE Strategy | |
| # latents_condition_image = self.vae.encode(control_image*2-1).latent_dist.sample() | |
| # latents_condition_image = latents_condition_image * self.vae.config.scaling_factor | |
| latents_condition_image = control_image[:1] | |
| sigmas = self.scheduler.sigmas.to(device=device, dtype=dtype) | |
| sigma = sigmas[0].flatten() | |
| while len(sigma.shape) < 4: | |
| sigma = sigma.unsqueeze(-1) | |
| latents = (1.0 - sigma) * latents_condition_image + sigma * latents | |
| # 8. Denoising loop | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| _, _, h, w = latents.size() | |
| tile_size, tile_overlap = (latent_tiled_size, latent_tiled_overlap) if args is not None else (256, 8) | |
| if h*w<=tile_size*tile_size: | |
| print(f"[Tiled Latent]: the input size is tiny and unnecessary to tile.") | |
| else: | |
| print(f"[Tiled Latent]: the input size is {latents.shape[-2]}x{latents.shape[-1]}, need to tiled") | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| # latent_model_input = torch.cat([latents, control_image], dim=1) | |
| latent_model_input = latents | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latent_model_input] * 2) if self.do_classifier_free_guidance else latent_model_input | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latent_model_input.shape[0]) | |
| if h*w<=tile_size*tile_size: # tiled latent input | |
| # image_embedding = control_image.view(control_image.shape[0], 16, -1) | |
| # prompt_embeds_input = torch.cat([prompt_embeds, image_embedding], dim=-2) | |
| prompt_embeds_input = prompt_embeds | |
| if negative_prompt_embeds is not None: | |
| # negative_prompt_embeds_input = torch.cat([negative_prompt_embeds, image_embedding], dim=-2) | |
| negative_prompt_embeds_input = negative_prompt_embeds | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds_input = torch.cat([negative_prompt_embeds_input, prompt_embeds_input], dim=0) | |
| pooled_prompt_embeds_input = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) | |
| else: | |
| pooled_prompt_embeds_input = pooled_prompt_embeds | |
| # controlnet(s) inference | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| controlnet_image=control_image, | |
| timestep=timestep, | |
| encoder_hidden_states=prompt_embeds_input, | |
| pooled_projections=pooled_prompt_embeds_input, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| else: | |
| tile_weights = self._gaussian_weights(tile_size, tile_size, 1) | |
| tile_size = min(tile_size, min(h, w)) | |
| tile_weights = self._gaussian_weights(tile_size, tile_size, 1) | |
| grid_rows = 0 | |
| cur_x = 0 | |
| while cur_x < latent_model_input.size(-1): | |
| cur_x = max(grid_rows * tile_size-tile_overlap * grid_rows, 0)+tile_size | |
| grid_rows += 1 | |
| grid_cols = 0 | |
| cur_y = 0 | |
| while cur_y < latent_model_input.size(-2): | |
| cur_y = max(grid_cols * tile_size-tile_overlap * grid_cols, 0)+tile_size | |
| grid_cols += 1 | |
| input_list = [] | |
| cond_list = [] | |
| img_list = [] | |
| noise_preds = [] | |
| for row in range(grid_rows): | |
| noise_preds_row = [] | |
| for col in range(grid_cols): | |
| if col < grid_cols-1 or row < grid_rows-1: | |
| # extract tile from input image | |
| ofs_x = max(row * tile_size-tile_overlap * row, 0) | |
| ofs_y = max(col * tile_size-tile_overlap * col, 0) | |
| # input tile area on total image | |
| if row == grid_rows-1: | |
| ofs_x = w - tile_size | |
| if col == grid_cols-1: | |
| ofs_y = h - tile_size | |
| input_start_x = ofs_x | |
| input_end_x = ofs_x + tile_size | |
| input_start_y = ofs_y | |
| input_end_y = ofs_y + tile_size | |
| # input tile dimensions | |
| input_tile = latent_model_input[:, :, input_start_y:input_end_y, input_start_x:input_end_x] | |
| input_list.append(input_tile) | |
| cond_tile = control_image[:, :, input_start_y:input_end_y, input_start_x:input_end_x] | |
| cond_list.append(cond_tile) | |
| # img_tile = image[:, :, input_start_y*8:input_end_y*8, input_start_x*8:input_end_x*8] | |
| # img_list.append(img_tile) | |
| if len(input_list) == batch_size or col == grid_cols-1: | |
| input_list_t = torch.cat(input_list, dim=0) | |
| cond_list_t = torch.cat(cond_list, dim=0) | |
| # image_embedding = cond_list_t.view(cond_list_t.shape[0], 16, -1) | |
| # prompt_embeds_input = torch.cat([prompt_embeds, image_embedding], dim=-2) | |
| prompt_embeds_input = prompt_embeds | |
| if negative_prompt_embeds is not None: | |
| # negative_prompt_embeds_input = torch.cat([negative_prompt_embeds, image_embedding], dim=-2) | |
| negative_prompt_embeds_input = negative_prompt_embeds | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds_input = torch.cat([negative_prompt_embeds_input, prompt_embeds_input], dim=0) | |
| pooled_prompt_embeds_input = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) | |
| else: | |
| pooled_prompt_embeds_input = pooled_prompt_embeds | |
| # img_list_t = torch.cat(img_list, dim=0) | |
| #print(input_list_t.shape, cond_list_t.shape, img_list_t.shape, fg_mask_list_t.shape) | |
| noise_pred = self.transformer( | |
| hidden_states=input_list_t, | |
| controlnet_image=cond_list_t, | |
| timestep=timestep, | |
| encoder_hidden_states=prompt_embeds_input, | |
| pooled_projections=pooled_prompt_embeds_input, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| #for sample_i in range(model_out.size(0)): | |
| # noise_preds_row.append(model_out[sample_i].unsqueeze(0)) | |
| input_list = [] | |
| cond_list = [] | |
| img_list = [] | |
| noise_preds.append(noise_pred) | |
| # Stitch noise predictions for all tiles | |
| noise_pred = torch.zeros(latent_model_input.shape, device=latents.device) | |
| contributors = torch.zeros(latent_model_input.shape, device=latents.device) | |
| # Add each tile contribution to overall latents | |
| for row in range(grid_rows): | |
| for col in range(grid_cols): | |
| if col < grid_cols-1 or row < grid_rows-1: | |
| # extract tile from input image | |
| ofs_x = max(row * tile_size-tile_overlap * row, 0) | |
| ofs_y = max(col * tile_size-tile_overlap * col, 0) | |
| # input tile area on total image | |
| if row == grid_rows-1: | |
| ofs_x = w - tile_size | |
| if col == grid_cols-1: | |
| ofs_y = h - tile_size | |
| input_start_x = ofs_x | |
| input_end_x = ofs_x + tile_size | |
| input_start_y = ofs_y | |
| input_end_y = ofs_y + tile_size | |
| noise_pred[:, :, input_start_y:input_end_y, input_start_x:input_end_x] += noise_preds[row*grid_cols + col] * tile_weights | |
| contributors[:, :, input_start_y:input_end_y, input_start_x:input_end_x] += tile_weights | |
| # Average overlapping areas with more than 1 contributor | |
| noise_pred /= contributors | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| negative_pooled_prompt_embeds = callback_outputs.pop( | |
| "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds | |
| ) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return StableDiffusion3PipelineOutput(images=image) | |