aiben / src /vision /stable_diffusion_xl.py
abugaber's picture
Upload folder using huggingface_hub
3943768 verified
import os
import filelock
import torch
from src.utils import makedirs
from src.vision.sdxl_turbo import get_device
def get_pipe_make_image(gpu_id, refine=True,
base_model="stabilityai/stable-diffusion-xl-base-1.0",
refiner_model="stabilityai/stable-diffusion-xl-refiner-1.0",
high_noise_frac=0.8):
if base_model is None:
base_model = "stabilityai/stable-diffusion-xl-base-1.0"
if base_model == "stabilityai/stable-diffusion-xl-base-1.0" and refiner_model is None:
refiner_model = "stabilityai/stable-diffusion-xl-refiner-1.0"
device = get_device(gpu_id)
if 'diffusion-3' in base_model:
from diffusers import StableDiffusion3Pipeline
cls = StableDiffusion3Pipeline
extra1 = dict()
extra2 = dict()
else:
from diffusers import DiffusionPipeline
cls = DiffusionPipeline
# extra1 = dict(denoising_end=high_noise_frac, output_type="latent")
# extra2 = dict(denoising_end=high_noise_frac)
extra1 = dict()
extra2 = dict()
base = cls.from_pretrained(
base_model,
torch_dtype=torch.float16,
use_safetensors=True,
add_watermarker=False,
# variant="fp16"
).to(device)
if not refine or not refiner_model:
refiner = None
else:
refiner = cls.from_pretrained(
refiner_model,
text_encoder_2=base.text_encoder_2,
vae=base.vae,
torch_dtype=torch.float16,
use_safetensors=True,
# variant="fp16",
).to(device)
return base, refiner, extra1, extra2
def make_image(prompt,
filename=None,
gpu_id='auto',
pipe=None,
image_size="1024x1024",
image_quality='standard',
image_guidance_scale=3.0,
base_model=None,
refiner_model=None,
image_num_inference_steps=40, high_noise_frac=0.8):
if image_quality == 'manual':
# listen to guidance_scale and num_inference_steps passed in
pass
else:
if image_quality == 'quick':
image_num_inference_steps = 10
image_size = "512x512"
elif image_quality == 'standard':
image_num_inference_steps = 20
elif image_quality == 'hd':
image_num_inference_steps = 50
if pipe is None:
base, refiner, extra1, extra2 = get_pipe_make_image(gpu_id=gpu_id,
base_model=base_model,
refiner_model=refiner_model,
high_noise_frac=high_noise_frac)
else:
base, refiner, extra1, extra2 = pipe
lock_type = 'image'
base_path = os.path.join('locks', 'image_locks')
base_path = makedirs(base_path, exist_ok=True, tmp_ok=True, use_base=True)
lock_file = os.path.join(base_path, "%s.lock" % lock_type)
makedirs(os.path.dirname(lock_file)) # ensure made
with filelock.FileLock(lock_file):
# Define how many steps and what % of steps to be run on each experts (80/20) here
# run both experts
image = base(
prompt=prompt,
height=int(image_size.lower().split('x')[0]),
width=int(image_size.lower().split('x')[1]),
num_inference_steps=image_num_inference_steps,
guidance_scale=image_guidance_scale,
**extra1,
).images
if refiner:
image = refiner(
prompt=prompt,
height=int(image_size.lower().split('x')[0]),
width=int(image_size.lower().split('x')[1]),
num_inference_steps=image_num_inference_steps,
guidance_scale=image_guidance_scale,
**extra2,
image=image,
).images[0]
if filename:
if isinstance(image, list):
image = image[-1]
image.save(filename)
return filename
return image