File size: 35,354 Bytes
3943768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 |
import os
import time
import pytest
from tests.utils import wrap_test_forked
from src.image_utils import get_image_file
from src.enums import source_prefix, source_postfix
from src.prompter import generate_prompt, convert_messages_and_extract_images, get_llm_history
example_data_point0 = dict(instruction="Summarize",
input="Ducks eat seeds by the lake, then swim in the lake where fish eat small animals.",
output="Ducks eat and swim at the lake.")
example_data_point1 = dict(instruction="Who is smarter, Einstein or Newton?",
output="Einstein.")
example_data_point2 = dict(input="Who is smarter, Einstein or Newton?",
output="Einstein.")
example_data_points = [example_data_point0, example_data_point1, example_data_point2]
@wrap_test_forked
def test_train_prompt(prompt_type='instruct', data_point=0):
example_data_point = example_data_points[data_point]
return generate_prompt(example_data_point, prompt_type, '', False, False)
@wrap_test_forked
def test_test_prompt(prompt_type='instruct', data_point=0):
example_data_point = example_data_points[data_point]
example_data_point.pop('output', None)
return generate_prompt(example_data_point, prompt_type, '', False, False)
@wrap_test_forked
def test_test_prompt2(prompt_type='human_bot', data_point=0):
example_data_point = example_data_points[data_point]
example_data_point.pop('output', None)
res = generate_prompt(example_data_point, prompt_type, '', False, False)
print(res, flush=True)
return res
prompt_fastchat = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hello! ASSISTANT: Hi!</s>USER: How are you? ASSISTANT: I'm good</s>USER: Go to the market? ASSISTANT:"""
prompt_humanbot = """<human>: Hello!\n<bot>: Hi!\n<human>: How are you?\n<bot>: I'm good\n<human>: Go to the market?\n<bot>:"""
prompt_prompt_answer = "<|prompt|>Hello!<|endoftext|><|answer|>Hi!<|endoftext|><|prompt|>How are you?<|endoftext|><|answer|>I'm good<|endoftext|><|prompt|>Go to the market?<|endoftext|><|answer|>"
prompt_prompt_answer_openllama = "<|prompt|>Hello!</s><|answer|>Hi!</s><|prompt|>How are you?</s><|answer|>I'm good</s><|prompt|>Go to the market?</s><|answer|>"
prompt_mpt_instruct = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction
Hello!
### Response
Hi!
### Instruction
How are you?
### Response
I'm good
### Instruction
Go to the market?
### Response
"""
prompt_mpt_chat = """<|im_start|>system
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.
<|im_end|><|im_start|>user
Hello!<|im_end|><|im_start|>assistant
Hi!<|im_end|><|im_start|>user
How are you?<|im_end|><|im_start|>assistant
I'm good<|im_end|><|im_start|>user
Go to the market?<|im_end|><|im_start|>assistant
"""
prompt_falcon = """User: Hello!
Assistant: Hi!
User: How are you?
Assistant: I'm good
User: Go to the market?
Assistant:"""
prompt_llama2 = """<s>[INST] Hello! [/INST] Hi! </s><s>[INST] How are you? [/INST] I'm good </s><s>[INST] Go to the market? [/INST]"""
prompt_llama2_sys = """<s>[INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>
Hello! [/INST] Hi! </s><s>[INST] How are you? [/INST] I'm good </s><s>[INST] Go to the market? [/INST]"""
prompt_llama2_pig = """<s>[INST] Who are you? [/INST] I am a big pig who loves to tell kid stories </s><s>[INST] Hello! [/INST] Hi! </s><s>[INST] How are you? [/INST] I'm good </s><s>[INST] Go to the market? [/INST]"""
# Fastsys doesn't put space above before final [/INST], I think wrong, since with context version has space.
# and llama2 code has space before it always: https://github.com/facebookresearch/llama/blob/6c7fe276574e78057f917549435a2554000a876d/llama/generation.py
prompt_beluga = """### User:
Hello!
### Assistant:
Hi!
### User:
How are you?
### Assistant:
I'm good
### User:
Go to the market?
### Assistant:
"""
prompt_beluga_sys = """### System:
You are Stable Beluga, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.
### User:
Hello!
### Assistant:
Hi!
### User:
How are you?
### Assistant:
I'm good
### User:
Go to the market?
### Assistant:
"""
prompt_falcon180 = """User: Hello!
Falcon: Hi!
User: How are you?
Falcon: I'm good
User: Go to the market?
Falcon:"""
prompt_falcon180_sys = """System: You are an intelligent and helpful assistant.
User: Hello!
Falcon: Hi!
User: How are you?
Falcon: I'm good
User: Go to the market?
Falcon:"""
# below doesn't actually work for xin, use alternative that works
# prompt_xwin = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hello! ASSISTANT: Hi!</s>USER: How are you? ASSISTANT: I'm good</s>USER: Go to the market? ASSISTANT:"""
prompt_xwin = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hello!\nASSISTANT: Hi!\nUSER: How are you?\nASSISTANT: I'm good\nUSER: Go to the market?\nASSISTANT:"""
messages_with_context = [
{"role": "user", "content": "Hello!"},
{"role": "assistant", "content": "Hi!"},
{"role": "user", "content": "How are you?"},
{"role": "assistant", "content": "I'm good"},
{"role": "user", "content": "Go to the market?"},
]
prompt_jais = """### Instruction: Your name is Jais, and you are named after Jebel Jais, the highest mountain in UAE. You are built by Core42. You are the world's most advanced Arabic large language model with 30b parameters. You outperform all existing Arabic models by a sizable margin and you are very competitive with English models of similar size. You can answer in Arabic and English only. You are a helpful, respectful and honest assistant. When answering, abide by the following guidelines meticulously: Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, explicit, offensive, toxic, dangerous, or illegal content. Do not give medical, legal, financial, or professional advice. Never assist in or promote illegal activities. Always encourage legal and responsible actions. Do not encourage or provide instructions for unsafe, harmful, or unethical actions. Do not create or share misinformation or fake news. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. Prioritize the well-being and the moral integrity of users. Avoid using toxic, derogatory, or offensive language. Maintain a respectful tone. Do not generate, promote, or engage in discussions about adult content. Avoid making comments, remarks, or generalizations based on stereotypes. Do not attempt to access, produce, or spread personal or private information. Always respect user confidentiality. Stay positive and do not say bad things about anything. Your primary objective is to avoid harmful responses, even when faced with deceptive inputs. Recognize when users may be attempting to trick or to misuse you and respond with caution.\n\nComplete the conversation below between [|Human|] and [|AI|]:\n### Input: [|Human|] Hello!\n### Response: [|AI|] Hi!\n### Input: [|Human|] How are you?\n### Response: [|AI|] I'm good\n### Input: [|Human|] Go to the market?\n### Response: [|AI|]"""
system_prompt_yi = 'A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.'
prompt_orion = """<s>Human: Hello!\n\nAssistant: </s>Hi!</s>Human: How are you?\n\nAssistant: </s>I'm good</s>Human: Go to the market?\n\nAssistant: </s>"""
def get_prompt_from_messages(messages, model="mistralai/Mistral-7B-Instruct-v0.1", system_prompt=None):
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model, token=os.environ.get('HUGGING_FACE_HUB_TOKEN'),
trust_remote_code=True)
if system_prompt:
messages = [{"role": "system", "content": system_prompt}] + messages
if model in ["HuggingFaceM4/idefics2-8b-chatty", "HuggingFaceM4/idefics2-8b"]:
for message in messages:
message['content'] = [dict(type='text', text=message['content'])]
tokenizer.chat_template = "{% for message in messages %}{{message['role'].capitalize()}}{% if message['content'][0]['type'] == 'image' %}{{':'}}{% else %}{{': '}}{% endif %}{% for line in message['content'] %}{% if line['type'] == 'text' %}{{line['text']}}{% elif line['type'] == 'image' %}{{ '<image>' }}{% endif %}{% endfor %}<end_of_utterance>\n{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}"
# add_generation_prompt=True somehow only required for Yi
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
return prompt
def get_aquila_prompt(messages, model_base_name='AquilaChat2-34B-16K', with_sys=True):
from models.predict_aquila import get_conv_template
template_map = {"AquilaChat2-7B": "aquila-v1",
"AquilaChat2-34B": "aquila-legacy",
"AquilaChat2-7B-16K": "aquila",
"AquilaChat2-34B-16K": "aquila"}
convo_template = template_map.get(model_base_name, "aquila-chat")
conv = get_conv_template(convo_template)
if not with_sys:
conv.system_message = ''
for message in messages:
# roles=("Human", "Assistant", "System"),
if message['role'] == 'user':
conv.append_message(conv.roles[0], message['content'])
elif message['role'] == 'assistant':
conv.append_message(conv.roles[1], message['content'])
elif message['role'] == 'system':
conv.append_message(conv.roles[2], message['content'])
# assume end with asking assostiant
conv.append_message(conv.roles[1], None)
return conv.get_prompt()
@wrap_test_forked
@pytest.mark.parametrize("prompt_type,system_prompt,chat_conversation,expected",
[
('vicuna11', 'auto', None, prompt_fastchat),
('human_bot', '', None, prompt_humanbot),
('prompt_answer', '', None, prompt_prompt_answer),
('prompt_answer_openllama', '', None, prompt_prompt_answer_openllama),
('mptinstruct', 'auto', None, prompt_mpt_instruct),
('mptchat', 'auto', None, prompt_mpt_chat),
('falcon', '', None, prompt_falcon),
('llama2', '', None, prompt_llama2),
('llama2', 'auto', None, prompt_llama2_sys),
('llama2', '', [('Who are you?', 'I am a big pig who loves to tell kid stories')],
prompt_llama2_pig),
('beluga', '', None, prompt_beluga),
('beluga', 'auto', None, prompt_beluga_sys),
('falcon_chat', '', None, prompt_falcon180),
('falcon_chat', 'auto', None, prompt_falcon180_sys),
('mistral', '', None, get_prompt_from_messages(messages_with_context)),
('zephyr', '', None, get_prompt_from_messages(messages_with_context,
model='HuggingFaceH4/zephyr-7b-beta')),
('zephyr', 'auto', None, get_prompt_from_messages(messages_with_context,
model='HuggingFaceH4/zephyr-7b-beta',
system_prompt='You are an AI that follows instructions extremely well and as helpful as possible.')),
('zephyr', 'I am a cute pixie.', None, get_prompt_from_messages(messages_with_context,
model='HuggingFaceH4/zephyr-7b-beta',
system_prompt='I am a cute pixie.')),
('xwin', 'auto', None, prompt_xwin),
('aquila', '', None, get_aquila_prompt(messages_with_context, with_sys=False,
model_base_name='AquilaChat2-34B-16K')),
('aquila', 'auto', None, get_aquila_prompt(messages_with_context, with_sys=True,
model_base_name='AquilaChat2-34B-16K')),
('aquila_legacy', 'auto', None, get_aquila_prompt(messages_with_context, with_sys=True,
model_base_name='AquilaChat2-34B')),
('aquila_v1', 'auto', None, get_aquila_prompt(messages_with_context, with_sys=True,
model_base_name='AquilaChat2-7B')),
('deepseek_coder', 'auto', None, get_prompt_from_messages(messages_with_context,
model='deepseek-ai/deepseek-coder-33b-instruct')),
('jais', 'auto', None, prompt_jais),
('yi', 'auto', None,
get_prompt_from_messages(messages_with_context, model='01-ai/Yi-34B-Chat',
system_prompt=system_prompt_yi)),
('orion', '', None, prompt_orion),
('gemma', '', None,
get_prompt_from_messages(messages_with_context, model='google/gemma-7b-it')),
# they baked in system prompt
('qwen', 'You are a helpful assistant.', None,
get_prompt_from_messages(messages_with_context, model='Qwen/Qwen1.5-72B-Chat')),
('idefics2',
"",
None,
get_prompt_from_messages(messages_with_context, model='HuggingFaceM4/idefics2-8b')),
]
)
def test_prompt_with_context(prompt_type, system_prompt, chat_conversation, expected):
prompt_dict = None # not used unless prompt_type='custom'
langchain_mode = 'Disabled'
add_chat_history_to_context = True
model_max_length = 2048
memory_restriction_level = 0
keep_sources_in_context = False
iinput = ''
stream_output = False
debug = False
from src.prompter import Prompter
from src.gen import history_to_context
t0 = time.time()
history = [["Hello!", "Hi!"],
["How are you?", "I'm good"],
["Go to the market?", None]
]
print("duration1: %s %s" % (prompt_type, time.time() - t0), flush=True)
t0 = time.time()
context, history = history_to_context(history,
langchain_mode=langchain_mode,
add_chat_history_to_context=add_chat_history_to_context,
prompt_type=prompt_type,
prompt_dict=prompt_dict,
model_max_length=model_max_length,
memory_restriction_level=memory_restriction_level,
keep_sources_in_context=keep_sources_in_context,
system_prompt=system_prompt,
chat_conversation=chat_conversation)
print("duration2: %s %s" % (prompt_type, time.time() - t0), flush=True)
t0 = time.time()
instruction = history[-1][0]
# get prompt
prompter = Prompter(prompt_type, prompt_dict, debug=debug, stream_output=stream_output,
system_prompt=system_prompt)
# for instruction-tuned models, expect this:
assert prompter.PreResponse
assert prompter.PreInstruct
assert prompter.botstr
assert prompter.humanstr
print("duration3: %s %s" % (prompt_type, time.time() - t0), flush=True)
t0 = time.time()
data_point = dict(context=context, instruction=instruction, input=iinput)
prompt = prompter.generate_prompt(data_point)
print('prompt\n', prompt)
print('expected\n', expected)
print("duration4: %s %s" % (prompt_type, time.time() - t0), flush=True)
assert prompt == expected
assert prompt.find(source_prefix) == -1
prompt_fastchat1 = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Go to the market? ASSISTANT:"""
prompt_humanbot1 = """<human>: Go to the market?\n<bot>:"""
prompt_prompt_answer1 = "<|prompt|>Go to the market?<|endoftext|><|answer|>"
prompt_prompt_answer_openllama1 = "<|prompt|>Go to the market?</s><|answer|>"
prompt_mpt_instruct1 = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction
Go to the market?
### Response
"""
prompt_mpt_chat1 = """<|im_start|>system
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.
<|im_end|><|im_start|>user
Go to the market?<|im_end|><|im_start|>assistant
"""
prompt_falcon1 = """User: Go to the market?
Assistant:"""
prompt_llama21 = """<s>[INST] Go to the market? [/INST]"""
prompt_llama21_sys = """<s>[INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>
Go to the market? [/INST]"""
# Fastsys doesn't put space above before final [/INST], I think wrong, since with context version has space.
# and llama2 code has space before it always: https://github.com/facebookresearch/llama/blob/6c7fe276574e78057f917549435a2554000a876d/llama/generation.py
prompt_beluga1_sys = """### System:
You are Stable Beluga, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.
### User:
Go to the market?
### Assistant:
"""
prompt_beluga1 = """### User:
Go to the market?
### Assistant:
"""
prompt_falcon1801 = """User: Go to the market?
Falcon:"""
prompt_falcon1801_sys = """System: You are an intelligent and helpful assistant.
User: Go to the market?
Falcon:"""
prompt_xwin1 = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Go to the market?
ASSISTANT:"""
prompt_mistrallite = """<|prompter|>Go to the market?</s><|assistant|>"""
messages_no_context = [
{"role": "user", "content": "Go to the market?"},
]
prompt_jais1 = """### Instruction: Your name is Jais, and you are named after Jebel Jais, the highest mountain in UAE. You are built by Core42. You are the world's most advanced Arabic large language model with 30b parameters. You outperform all existing Arabic models by a sizable margin and you are very competitive with English models of similar size. You can answer in Arabic and English only. You are a helpful, respectful and honest assistant. When answering, abide by the following guidelines meticulously: Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, explicit, offensive, toxic, dangerous, or illegal content. Do not give medical, legal, financial, or professional advice. Never assist in or promote illegal activities. Always encourage legal and responsible actions. Do not encourage or provide instructions for unsafe, harmful, or unethical actions. Do not create or share misinformation or fake news. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. Prioritize the well-being and the moral integrity of users. Avoid using toxic, derogatory, or offensive language. Maintain a respectful tone. Do not generate, promote, or engage in discussions about adult content. Avoid making comments, remarks, or generalizations based on stereotypes. Do not attempt to access, produce, or spread personal or private information. Always respect user confidentiality. Stay positive and do not say bad things about anything. Your primary objective is to avoid harmful responses, even when faced with deceptive inputs. Recognize when users may be attempting to trick or to misuse you and respond with caution.\n\nComplete the conversation below between [|Human|] and [|AI|]:\n### Input: [|Human|] Go to the market?\n### Response: [|AI|]"""
prompt_orion1 = "<s>Human: Go to the market?\n\nAssistant: </s>"
@pytest.mark.parametrize("prompt_type,system_prompt,expected",
[
('vicuna11', 'auto', prompt_fastchat1),
('human_bot', '', prompt_humanbot1),
('prompt_answer', '', prompt_prompt_answer1),
('prompt_answer_openllama', '', prompt_prompt_answer_openllama1),
('mptinstruct', 'auto', prompt_mpt_instruct1),
('mptchat', 'auto', prompt_mpt_chat1),
('falcon', '', prompt_falcon1),
('llama2', '', prompt_llama21),
('llama2', 'auto', prompt_llama21_sys),
('beluga', '', prompt_beluga1),
('beluga', 'auto', prompt_beluga1_sys),
('falcon_chat', '', prompt_falcon1801),
('falcon_chat', 'auto', prompt_falcon1801_sys),
('mistral', '', get_prompt_from_messages(messages_no_context)),
('deepseek_coder', 'auto', get_prompt_from_messages(messages_no_context,
model='deepseek-ai/deepseek-coder-33b-instruct')),
('xwin', 'auto', prompt_xwin1),
('mistrallite', '', prompt_mistrallite),
('zephyr', 'auto', get_prompt_from_messages(messages_no_context,
model='HuggingFaceH4/zephyr-7b-beta',
system_prompt='You are an AI that follows instructions extremely well and as helpful as possible.')),
('zephyr', '', get_prompt_from_messages(messages_no_context,
model='HuggingFaceH4/zephyr-7b-beta')),
('zephyr', 'I am a cute pixie.', get_prompt_from_messages(messages_no_context,
model='HuggingFaceH4/zephyr-7b-beta',
system_prompt='I am a cute pixie.')),
('aquila', 'auto', get_aquila_prompt(messages_no_context, with_sys=True)),
('aquila_legacy', 'auto',
get_aquila_prompt(messages_no_context, with_sys=True, model_base_name='AquilaChat2-34B')),
('aquila_v1', 'auto',
get_aquila_prompt(messages_no_context, with_sys=True, model_base_name='AquilaChat2-7B')),
('jais', 'auto', prompt_jais1),
('yi', 'auto', get_prompt_from_messages(messages_no_context, model='01-ai/Yi-34B-Chat',
system_prompt=system_prompt_yi)),
('orion', '', prompt_orion1),
('gemma', '', get_prompt_from_messages(messages_no_context, model='google/gemma-7b-it')),
# then baked in system prompt
('qwen', 'You are a helpful assistant.', get_prompt_from_messages(messages_no_context, model='Qwen/Qwen1.5-72B-Chat')),
('idefics2',
"",
get_prompt_from_messages(messages_no_context, model='HuggingFaceM4/idefics2-8b')),
]
)
@wrap_test_forked
def test_prompt_with_no_context(prompt_type, system_prompt, expected):
prompt_dict = None # not used unless prompt_type='custom'
chat = True
iinput = ''
stream_output = False
debug = False
from src.prompter import Prompter
context = ''
instruction = "Go to the market?"
# get prompt
prompter = Prompter(prompt_type, prompt_dict, debug=debug, stream_output=stream_output,
system_prompt=system_prompt)
# for instruction-tuned models, expect this:
assert prompter.PreResponse
assert prompter.PreInstruct
assert prompter.botstr
assert prompter.humanstr
data_point = dict(context=context, instruction=instruction, input=iinput)
prompt = prompter.generate_prompt(data_point)
print(prompt)
assert prompt == expected
assert prompt.find(source_prefix) == -1
@wrap_test_forked
def test_source():
prompt = "Who are you?%s\nFOO\n%s" % (source_prefix, source_postfix)
assert prompt.find(source_prefix) >= 0
# https://huggingface.co/spaces/tiiuae/falcon-180b-demo/blob/main/app.py
def falcon180_format_prompt(message, history, system_prompt):
prompt = ""
if system_prompt:
prompt += f"System: {system_prompt}\n"
for user_prompt, bot_response in history:
prompt += f"User: {user_prompt}\n"
prompt += f"Falcon: {bot_response}\n" # Response already contains "Falcon: "
prompt += f"""User: {message}
Falcon:"""
return prompt
@wrap_test_forked
def test_falcon180():
prompt = "Who are you?"
for system_prompt in ['', "Talk like a Pixie."]:
history = [["Who are you?", "I am Falcon, a monster AI model."],
["What can you do?", "I can do well on leaderboard but not actually 1st."]]
formatted_prompt = falcon180_format_prompt(prompt, history, system_prompt)
print(formatted_prompt)
@wrap_test_forked
def test_hf_image_chat_template():
# Example usage:
tuple_list = [
("Hello, how are you?", "I'm good, thank you!"),
(("What do you see?", "tests/jon.png"), "This is a presentation."),
("Can you help me with my project?", "Sure, what do you need help with?"),
(("And how about this image?", "tests/receipt.jpg"), "This image shows a receipt.")
]
messages, images = convert_messages_and_extract_images(tuple_list)
convert = True
str_bytes = False
image_file = images
image_control = None
document_choice = None
img_file = get_image_file(image_file, image_control, document_choice, convert=convert, str_bytes=str_bytes)
# Create inputs
from transformers import AutoProcessor
from transformers.image_utils import load_image
images = [load_image(x) for x in img_file]
# `http://` or `https://`, a valid path to an image file, or a base64 encoded string.
processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b")
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
print(prompt)
assert prompt == """User: Hello, how are you?<end_of_utterance>
Assistant: I'm good, thank you!<end_of_utterance>
User:<image>What do you see?<end_of_utterance>
Assistant: This is a presentation.<end_of_utterance>
User: Can you help me with my project?<end_of_utterance>
Assistant: Sure, what do you need help with?<end_of_utterance>
User:<image>And how about this image?<end_of_utterance>
Assistant: This image shows a receipt.<end_of_utterance>
Assistant:"""
inputs = processor(text=prompt, images=images, return_tensors="pt")
assert inputs is not None
@pytest.mark.parametrize("history, only_text, expected", [
# Test cases for empty and None history
(None, False, []),
([], False, []),
# Test cases with mixed valid and None users
([("user1", "message1"), ("user2", "message2"), (None, "error")], False, [("user1", "message1"), ("user2", "message2")]),
([("user1", "message1"), ("user2", "message2"), (None, "error")], True, [("user1", "message1"), ("user2", "message2")]),
([("user1", "message1"), ("user2", None), (None, "error")], True, [("user1", "message1")]),
([("user1", "message1"), ("user2", "message2"), ("user3", "message3"), (None, "error"), (None, "error2")], False, [("user1", "message1"), ("user2", "message2"), ("user3", "message3")]),
([("user1", "message1"), (None, "error1"), (None, "error2"), ("user2", "message2"), ("user3", "message3"), (None, "error3")], False, [("user1", "message1"), (None, "error1"), (None, "error2"), ("user2", "message2"), ("user3", "message3")]),
# Test cases for only valid users
([("user1", "message1"), ("user2", "message2")], False, [("user1", "message1"), ("user2", "message2")]),
# Test cases for only None users
([(None, "error1"), (None, "error2")], False, []),
([(None, "error1"), (None, "error2")], True, []),
# Test cases for only_text flag
([("user1", "message1"), (None, "error1"), ("user2", None), ("user3", "message3")], True, [("user1", "message1"), ("user3", "message3")]),
([("user1", "message1"), ("user2", "message2"), ("user3", "message3")], True, [("user1", "message1"), ("user2", "message2"), ("user3", "message3")])
])
def test_get_llm_history(history, only_text, expected):
assert get_llm_history(history, only_text) == expected
@pytest.mark.parametrize("history, system_prompt, model_max_length", [
# Short history, short system_prompt, short model_max_length
(
[["Hello!", "Hi!"], ["How are you?", "I'm good"], ["Go to the market?", None]],
"Short system prompt",
50
),
# Long history, no system_prompt, large model_max_length
(
[["Hello!" * 50, "Hi!" * 50], ["How are you?" * 50, "I'm good" * 50], ["Go to the market?" * 50, None]],
"",
2048
),
# Very long system_prompt, short history
(
[["Hello!", "Hi!"], ["How are you?", "I'm good"], ["Go to the market?", None]],
"System prompt " * 200,
1000
),
# Short history, large system_prompt, short model_max_length
(
[["Hello!", "Hi!"], ["How are you?", "I'm good"], ["Go to the market?", None]],
"System prompt " * 200,
300
),
# Very long history, large system_prompt, moderate model_max_length
(
[["Hello!" * 500, "Hi!" * 500], ["How are you?" * 500, "I'm good" * 500], ["Go to the market?" * 500, None]],
"System prompt " * 200,
1000
),
# Extremely long system_prompt, very short history
(
[["Hi", "Hello"]],
"System prompt " * 1000,
500
),
# Moderate history, moderate system_prompt, moderate model_max_length
(
[["Hello! " * 10, "Hi! " * 10], ["How are you? " * 10, "I'm good " * 10], ["Go to the market? " * 10, None]],
"Moderate system prompt",
150
),
# No system_prompt, short history, large model_max_length
(
[["Hi", "Hello"], ["What are you doing?", "Nothing much"], ["Do you like music?", "Yes"]],
"",
1000
),
# Short history, very short system_prompt, very short model_max_length
(
[["Hello!", "Hi!"], ["How are you?", "I'm good"], ["Go to the market?", None]],
"Sys",
20
),
# Long history, short system_prompt, short model_max_length
(
[["Hello!" * 20, "Hi!" * 20], ["How are you?" * 20, "I'm good" * 20], ["Go to the market?" * 20, None]],
"Short",
100
),
])
def test_history_to_context(history, system_prompt, model_max_length):
langchain_mode = 'Disabled'
add_chat_history_to_context = True
memory_restriction_level = 0
keep_sources_in_context = False
# Calculate the expected max prompt length considering the system prompt
system_prompt_length = len(system_prompt)
expected_max_prompt_length = max(0, model_max_length * 4 - system_prompt_length)
# Use the function
from src.gen import history_to_context
context, final_history = history_to_context(
history,
langchain_mode=langchain_mode,
add_chat_history_to_context=add_chat_history_to_context,
prompt_type='plain', # Using 'plain' as a default type
prompt_dict=None,
model_max_length=model_max_length,
memory_restriction_level=memory_restriction_level,
keep_sources_in_context=keep_sources_in_context,
system_prompt=system_prompt,
chat_conversation=None
)
# Verify the length of context and final history
context_length = len(context)
history_length_sum = sum(len(item[0]) + (len(item[1]) if item[1] is not None else 0) for item in final_history) // 4
fudge = 4
# Ensure the context length does not exceed the expected max prompt length
assert context_length <= expected_max_prompt_length + fudge
# Ensure the sum of history lengths does not exceed the expected max prompt length
assert history_length_sum <= expected_max_prompt_length + fudge
|