Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| import os | |
| import re | |
| import shutil | |
| from typing import Any | |
| import gradio as gr | |
| import huggingface_hub as hf | |
| import numpy as np | |
| import pandas as pd | |
| HfApi = hf.HfApi() | |
| try: | |
| import trackio.utils as utils | |
| from trackio.file_storage import FileStorage | |
| from trackio.media import TrackioImage | |
| from trackio.sqlite_storage import SQLiteStorage | |
| from trackio.table import Table | |
| from trackio.typehints import LogEntry, UploadEntry | |
| except: # noqa: E722 | |
| import utils | |
| from file_storage import FileStorage | |
| from media import TrackioImage | |
| from sqlite_storage import SQLiteStorage | |
| from table import Table | |
| from typehints import LogEntry, UploadEntry | |
| def get_project_info() -> str | None: | |
| dataset_id = os.environ.get("TRACKIO_DATASET_ID") | |
| space_id = os.environ.get("SPACE_ID") | |
| persistent_storage_enabled = os.environ.get( | |
| "PERSISTANT_STORAGE_ENABLED" | |
| ) # Space env name has a typo | |
| if persistent_storage_enabled: | |
| return "✨ Persistent Storage is enabled, logs are stored directly in this Space." | |
| if dataset_id: | |
| sync_status = utils.get_sync_status(SQLiteStorage.get_scheduler()) | |
| upgrade_message = f"New changes are synced every 5 min <span class='info-container'><input type='checkbox' class='info-checkbox' id='upgrade-info'><label for='upgrade-info' class='info-icon'>ⓘ</label><span class='info-expandable'> To avoid losing data between syncs, <a href='https://huggingface.co/spaces/{space_id}/settings' class='accent-link'>click here</a> to open this Space's settings and add Persistent Storage.</span></span>" | |
| if sync_status is not None: | |
| info = f"↻ Backed up {sync_status} min ago to <a href='https://huggingface.co/datasets/{dataset_id}' target='_blank' class='accent-link'>{dataset_id}</a> | {upgrade_message}" | |
| else: | |
| info = f"↻ Not backed up yet to <a href='https://huggingface.co/datasets/{dataset_id}' target='_blank' class='accent-link'>{dataset_id}</a> | {upgrade_message}" | |
| return info | |
| return None | |
| def get_projects(request: gr.Request): | |
| projects = SQLiteStorage.get_projects() | |
| if project := request.query_params.get("project"): | |
| interactive = False | |
| else: | |
| interactive = True | |
| project = projects[0] if projects else None | |
| return gr.Dropdown( | |
| label="Project", | |
| choices=projects, | |
| value=project, | |
| allow_custom_value=True, | |
| interactive=interactive, | |
| info=get_project_info(), | |
| ) | |
| def get_runs(project) -> list[str]: | |
| if not project: | |
| return [] | |
| return SQLiteStorage.get_runs(project) | |
| def get_available_metrics(project: str, runs: list[str]) -> list[str]: | |
| """Get all available metrics across all runs for x-axis selection.""" | |
| if not project or not runs: | |
| return ["step", "time"] | |
| all_metrics = set() | |
| for run in runs: | |
| metrics = SQLiteStorage.get_logs(project, run) | |
| if metrics: | |
| df = pd.DataFrame(metrics) | |
| numeric_cols = df.select_dtypes(include="number").columns | |
| numeric_cols = [c for c in numeric_cols if c not in utils.RESERVED_KEYS] | |
| all_metrics.update(numeric_cols) | |
| all_metrics.add("step") | |
| all_metrics.add("time") | |
| sorted_metrics = utils.sort_metrics_by_prefix(list(all_metrics)) | |
| result = ["step", "time"] | |
| for metric in sorted_metrics: | |
| if metric not in result: | |
| result.append(metric) | |
| return result | |
| def extract_images(logs: list[dict]) -> dict[str, list[TrackioImage]]: | |
| image_data = {} | |
| logs = sorted(logs, key=lambda x: x.get("step", 0)) | |
| for log in logs: | |
| for key, value in log.items(): | |
| if isinstance(value, dict) and value.get("_type") == TrackioImage.TYPE: | |
| if key not in image_data: | |
| image_data[key] = [] | |
| try: | |
| image_data[key].append(TrackioImage._from_dict(value)) | |
| except Exception as e: | |
| print(f"Image not currently available: {key}: {e}") | |
| return image_data | |
| def load_run_data( | |
| project: str | None, | |
| run: str | None, | |
| smoothing_granularity: int, | |
| x_axis: str, | |
| log_scale: bool = False, | |
| ) -> tuple[pd.DataFrame, dict]: | |
| if not project or not run: | |
| return None, None | |
| logs = SQLiteStorage.get_logs(project, run) | |
| if not logs: | |
| return None, None | |
| images = extract_images(logs) | |
| df = pd.DataFrame(logs) | |
| if "step" not in df.columns: | |
| df["step"] = range(len(df)) | |
| if x_axis == "time" and "timestamp" in df.columns: | |
| df["timestamp"] = pd.to_datetime(df["timestamp"]) | |
| first_timestamp = df["timestamp"].min() | |
| df["time"] = (df["timestamp"] - first_timestamp).dt.total_seconds() | |
| x_column = "time" | |
| elif x_axis == "step": | |
| x_column = "step" | |
| else: | |
| x_column = x_axis | |
| if log_scale and x_column in df.columns: | |
| x_vals = df[x_column] | |
| if (x_vals <= 0).any(): | |
| df[x_column] = np.log10(np.maximum(x_vals, 0) + 1) | |
| else: | |
| df[x_column] = np.log10(x_vals) | |
| if smoothing_granularity > 0: | |
| numeric_cols = df.select_dtypes(include="number").columns | |
| numeric_cols = [c for c in numeric_cols if c not in utils.RESERVED_KEYS] | |
| df_original = df.copy() | |
| df_original["run"] = f"{run}_original" | |
| df_original["data_type"] = "original" | |
| df_smoothed = df.copy() | |
| window_size = max(3, min(smoothing_granularity, len(df))) | |
| df_smoothed[numeric_cols] = ( | |
| df_smoothed[numeric_cols] | |
| .rolling(window=window_size, center=True, min_periods=1) | |
| .mean() | |
| ) | |
| df_smoothed["run"] = f"{run}_smoothed" | |
| df_smoothed["data_type"] = "smoothed" | |
| combined_df = pd.concat([df_original, df_smoothed], ignore_index=True) | |
| combined_df["x_axis"] = x_column | |
| return combined_df, images | |
| else: | |
| df["run"] = run | |
| df["data_type"] = "original" | |
| df["x_axis"] = x_column | |
| return df, images | |
| def update_runs( | |
| project, filter_text, user_interacted_with_runs=False, selected_runs_from_url=None | |
| ): | |
| if project is None: | |
| runs = [] | |
| num_runs = 0 | |
| else: | |
| runs = get_runs(project) | |
| num_runs = len(runs) | |
| if filter_text: | |
| runs = [r for r in runs if filter_text in r] | |
| if not user_interacted_with_runs: | |
| if selected_runs_from_url: | |
| value = [r for r in runs if r in selected_runs_from_url] | |
| else: | |
| value = runs | |
| return gr.CheckboxGroup(choices=runs, value=value), gr.Textbox( | |
| label=f"Runs ({num_runs})" | |
| ) | |
| else: | |
| return gr.CheckboxGroup(choices=runs), gr.Textbox(label=f"Runs ({num_runs})") | |
| def filter_runs(project, filter_text): | |
| runs = get_runs(project) | |
| runs = [r for r in runs if filter_text in r] | |
| return gr.CheckboxGroup(choices=runs, value=runs) | |
| def update_x_axis_choices(project, runs): | |
| """Update x-axis dropdown choices based on available metrics.""" | |
| available_metrics = get_available_metrics(project, runs) | |
| return gr.Dropdown( | |
| label="X-axis", | |
| choices=available_metrics, | |
| value="step", | |
| ) | |
| def toggle_timer(cb_value): | |
| if cb_value: | |
| return gr.Timer(active=True) | |
| else: | |
| return gr.Timer(active=False) | |
| def check_auth(hf_token: str | None) -> None: | |
| if os.getenv("SYSTEM") == "spaces": # if we are running in Spaces | |
| # check auth token passed in | |
| if hf_token is None: | |
| raise PermissionError( | |
| "Expected a HF_TOKEN to be provided when logging to a Space" | |
| ) | |
| who = HfApi.whoami(hf_token) | |
| access_token = who["auth"]["accessToken"] | |
| owner_name = os.getenv("SPACE_AUTHOR_NAME") | |
| repo_name = os.getenv("SPACE_REPO_NAME") | |
| # make sure the token user is either the author of the space, | |
| # or is a member of an org that is the author. | |
| orgs = [o["name"] for o in who["orgs"]] | |
| if owner_name != who["name"] and owner_name not in orgs: | |
| raise PermissionError( | |
| "Expected the provided hf_token to be the user owner of the space, or be a member of the org owner of the space" | |
| ) | |
| # reject fine-grained tokens without specific repo access | |
| if access_token["role"] == "fineGrained": | |
| matched = False | |
| for item in access_token["fineGrained"]["scoped"]: | |
| if ( | |
| item["entity"]["type"] == "space" | |
| and item["entity"]["name"] == f"{owner_name}/{repo_name}" | |
| and "repo.write" in item["permissions"] | |
| ): | |
| matched = True | |
| break | |
| if ( | |
| ( | |
| item["entity"]["type"] == "user" | |
| or item["entity"]["type"] == "org" | |
| ) | |
| and item["entity"]["name"] == owner_name | |
| and "repo.write" in item["permissions"] | |
| ): | |
| matched = True | |
| break | |
| if not matched: | |
| raise PermissionError( | |
| "Expected the provided hf_token with fine grained permissions to provide write access to the space" | |
| ) | |
| # reject read-only tokens | |
| elif access_token["role"] != "write": | |
| raise PermissionError( | |
| "Expected the provided hf_token to provide write permissions" | |
| ) | |
| def upload_db_to_space( | |
| project: str, uploaded_db: gr.FileData, hf_token: str | None | |
| ) -> None: | |
| check_auth(hf_token) | |
| db_project_path = SQLiteStorage.get_project_db_path(project) | |
| if os.path.exists(db_project_path): | |
| raise gr.Error( | |
| f"Trackio database file already exists for project {project}, cannot overwrite." | |
| ) | |
| os.makedirs(os.path.dirname(db_project_path), exist_ok=True) | |
| shutil.copy(uploaded_db["path"], db_project_path) | |
| def bulk_upload_media(uploads: list[UploadEntry], hf_token: str | None) -> None: | |
| check_auth(hf_token) | |
| for upload in uploads: | |
| media_path = FileStorage.init_project_media_path( | |
| upload["project"], upload["run"], upload["step"] | |
| ) | |
| shutil.copy(upload["uploaded_file"]["path"], media_path) | |
| def log( | |
| project: str, | |
| run: str, | |
| metrics: dict[str, Any], | |
| step: int | None, | |
| hf_token: str | None, | |
| ) -> None: | |
| check_auth(hf_token) | |
| SQLiteStorage.log(project=project, run=run, metrics=metrics, step=step) | |
| def bulk_log( | |
| logs: list[LogEntry], | |
| hf_token: str | None, | |
| ) -> None: | |
| check_auth(hf_token) | |
| logs_by_run = {} | |
| for log_entry in logs: | |
| key = (log_entry["project"], log_entry["run"]) | |
| if key not in logs_by_run: | |
| logs_by_run[key] = {"metrics": [], "steps": []} | |
| logs_by_run[key]["metrics"].append(log_entry["metrics"]) | |
| logs_by_run[key]["steps"].append(log_entry.get("step")) | |
| for (project, run), data in logs_by_run.items(): | |
| SQLiteStorage.bulk_log( | |
| project=project, | |
| run=run, | |
| metrics_list=data["metrics"], | |
| steps=data["steps"], | |
| ) | |
| def filter_metrics_by_regex(metrics: list[str], filter_pattern: str) -> list[str]: | |
| """ | |
| Filter metrics using regex pattern. | |
| Args: | |
| metrics: List of metric names to filter | |
| filter_pattern: Regex pattern to match against metric names | |
| Returns: | |
| List of metric names that match the pattern | |
| """ | |
| if not filter_pattern.strip(): | |
| return metrics | |
| try: | |
| pattern = re.compile(filter_pattern, re.IGNORECASE) | |
| return [metric for metric in metrics if pattern.search(metric)] | |
| except re.error: | |
| return [ | |
| metric for metric in metrics if filter_pattern.lower() in metric.lower() | |
| ] | |
| def configure(request: gr.Request): | |
| sidebar_param = request.query_params.get("sidebar") | |
| match sidebar_param: | |
| case "collapsed": | |
| sidebar = gr.Sidebar(open=False, visible=True) | |
| case "hidden": | |
| sidebar = gr.Sidebar(open=False, visible=False) | |
| case _: | |
| sidebar = gr.Sidebar(open=True, visible=True) | |
| metrics_param = request.query_params.get("metrics", "") | |
| runs_param = request.query_params.get("runs", "") | |
| selected_runs = runs_param.split(",") if runs_param else [] | |
| return [], sidebar, metrics_param, selected_runs | |
| def toggle_embed_visibility( | |
| current_visible: bool, project: str, metrics: str, selected_runs: list | |
| ): | |
| """Toggle the visibility of the embed textbox and update content if showing.""" | |
| new_visible = not current_visible | |
| if new_visible: | |
| embed_code = utils.generate_embed_code(project, metrics, selected_runs) | |
| return ( | |
| gr.Button("😶🌫️ Hide embed code", size="sm", variant="secondary"), | |
| gr.Textbox(visible=True, value=embed_code), | |
| new_visible, | |
| ) | |
| else: | |
| return ( | |
| gr.Button("🔗 Show embed code", size="sm", variant="secondary"), | |
| gr.Textbox(visible=False, value=""), | |
| new_visible, | |
| ) | |
| def update_embed_code_if_visible( | |
| visible: bool, project: str, metrics: str, selected_runs: list | |
| ): | |
| """Update embed code only if the textbox is currently visible.""" | |
| if visible: | |
| embed_code = utils.generate_embed_code(project, metrics, selected_runs) | |
| return gr.Textbox(value=embed_code) | |
| else: | |
| return gr.Textbox() | |
| def create_image_section(images_by_run: dict[str, dict[str, list[TrackioImage]]]): | |
| with gr.Accordion(label="media"): | |
| with gr.Group(elem_classes=("media-group")): | |
| for run, images_by_key in images_by_run.items(): | |
| with gr.Tab(label=run, elem_classes=("media-tab")): | |
| for key, images in images_by_key.items(): | |
| gr.Gallery( | |
| [(image._pil, image.caption) for image in images], | |
| label=key, | |
| columns=6, | |
| elem_classes=("media-gallery"), | |
| ) | |
| css = """ | |
| #run-cb .wrap { gap: 2px; } | |
| #run-cb .wrap label { | |
| line-height: 1; | |
| padding: 6px; | |
| } | |
| .logo-light { display: block; } | |
| .logo-dark { display: none; } | |
| .dark .logo-light { display: none; } | |
| .dark .logo-dark { display: block; } | |
| .dark .caption-label { color: white; } | |
| .info-container { | |
| position: relative; | |
| display: inline; | |
| } | |
| .info-checkbox { | |
| position: absolute; | |
| opacity: 0; | |
| pointer-events: none; | |
| } | |
| .info-icon { | |
| border-bottom: 1px dotted; | |
| cursor: pointer; | |
| user-select: none; | |
| color: var(--color-accent); | |
| } | |
| .info-expandable { | |
| display: none; | |
| opacity: 0; | |
| transition: opacity 0.2s ease-in-out; | |
| } | |
| .info-checkbox:checked ~ .info-expandable { | |
| display: inline; | |
| opacity: 1; | |
| } | |
| .info-icon:hover { opacity: 0.8; } | |
| .accent-link { font-weight: bold; } | |
| .media-gallery { max-height: 325px; } | |
| .media-group, .media-group > div { background: none; } | |
| .media-group .tabs { padding: 0.5em; } | |
| """ | |
| with gr.Blocks(theme="citrus", title="Trackio Dashboard", css=css) as demo: | |
| with gr.Sidebar(open=False) as sidebar: | |
| logo = gr.Markdown( | |
| f""" | |
| <img src='/gradio_api/file={utils.TRACKIO_LOGO_DIR}/trackio_logo_type_light_transparent.png' width='80%' class='logo-light'> | |
| <img src='/gradio_api/file={utils.TRACKIO_LOGO_DIR}/trackio_logo_type_dark_transparent.png' width='80%' class='logo-dark'> | |
| """ | |
| ) | |
| project_dd = gr.Dropdown(label="Project", allow_custom_value=True) | |
| if os.environ.get("SPACE_HOST"): | |
| with gr.Group(): | |
| embed_textbox = gr.Textbox( | |
| label="", | |
| max_lines=4, | |
| show_copy_button=True, | |
| visible=False, | |
| value="", | |
| ) | |
| embed_btn = gr.Button( | |
| "🔗 Show embed code", size="sm", variant="secondary" | |
| ) | |
| else: | |
| embed_textbox = None | |
| embed_btn = None | |
| run_tb = gr.Textbox(label="Runs", placeholder="Type to filter...") | |
| run_cb = gr.CheckboxGroup( | |
| label="Runs", choices=[], interactive=True, elem_id="run-cb" | |
| ) | |
| gr.HTML("<hr>") | |
| realtime_cb = gr.Checkbox(label="Refresh metrics realtime", value=True) | |
| smoothing_slider = gr.Slider( | |
| label="Smoothing Factor", | |
| minimum=0, | |
| maximum=20, | |
| value=10, | |
| step=1, | |
| info="0 = no smoothing", | |
| ) | |
| x_axis_dd = gr.Dropdown( | |
| label="X-axis", | |
| choices=["step", "time"], | |
| value="step", | |
| ) | |
| log_scale_cb = gr.Checkbox(label="Log scale X-axis", value=False) | |
| metric_filter_tb = gr.Textbox( | |
| label="Metric Filter (regex)", | |
| placeholder="e.g., loss|ndcg@10|gpu", | |
| value="", | |
| info="Filter metrics using regex patterns. Leave empty to show all metrics.", | |
| ) | |
| timer = gr.Timer(value=1) | |
| metrics_subset = gr.State([]) | |
| user_interacted_with_run_cb = gr.State(False) | |
| embed_visible = gr.State(False) | |
| selected_runs_from_url = gr.State([]) | |
| gr.on( | |
| [demo.load], | |
| fn=configure, | |
| outputs=[metrics_subset, sidebar, metric_filter_tb, selected_runs_from_url], | |
| ) | |
| gr.on( | |
| [demo.load], | |
| fn=get_projects, | |
| outputs=project_dd, | |
| show_progress="hidden", | |
| ) | |
| gr.on( | |
| [timer.tick], | |
| fn=update_runs, | |
| inputs=[ | |
| project_dd, | |
| run_tb, | |
| user_interacted_with_run_cb, | |
| selected_runs_from_url, | |
| ], | |
| outputs=[run_cb, run_tb], | |
| show_progress="hidden", | |
| ) | |
| gr.on( | |
| [timer.tick], | |
| fn=lambda: gr.Dropdown(info=get_project_info()), | |
| outputs=[project_dd], | |
| show_progress="hidden", | |
| ) | |
| gr.on( | |
| [demo.load, project_dd.change], | |
| fn=update_runs, | |
| inputs=[project_dd, run_tb, gr.State(False), selected_runs_from_url], | |
| outputs=[run_cb, run_tb], | |
| show_progress="hidden", | |
| ) | |
| gr.on( | |
| [demo.load, project_dd.change, run_cb.change], | |
| fn=update_x_axis_choices, | |
| inputs=[project_dd, run_cb], | |
| outputs=x_axis_dd, | |
| show_progress="hidden", | |
| ) | |
| realtime_cb.change( | |
| fn=toggle_timer, | |
| inputs=realtime_cb, | |
| outputs=timer, | |
| api_name="toggle_timer", | |
| ) | |
| run_cb.input( | |
| fn=lambda: True, | |
| outputs=user_interacted_with_run_cb, | |
| ) | |
| run_tb.input( | |
| fn=filter_runs, | |
| inputs=[project_dd, run_tb], | |
| outputs=run_cb, | |
| ) | |
| if embed_btn and embed_textbox: | |
| embed_btn.click( | |
| fn=toggle_embed_visibility, | |
| inputs=[embed_visible, project_dd, metric_filter_tb, run_cb], | |
| outputs=[embed_btn, embed_textbox, embed_visible], | |
| show_progress="hidden", | |
| ) | |
| metric_filter_tb.change( | |
| fn=update_embed_code_if_visible, | |
| inputs=[embed_visible, project_dd, metric_filter_tb, run_cb], | |
| outputs=embed_textbox, | |
| show_progress="hidden", | |
| ) | |
| run_cb.change( | |
| fn=update_embed_code_if_visible, | |
| inputs=[embed_visible, project_dd, metric_filter_tb, run_cb], | |
| outputs=embed_textbox, | |
| show_progress="hidden", | |
| ) | |
| gr.api( | |
| fn=upload_db_to_space, | |
| api_name="upload_db_to_space", | |
| ) | |
| gr.api( | |
| fn=bulk_upload_media, | |
| api_name="bulk_upload_media", | |
| ) | |
| gr.api( | |
| fn=log, | |
| api_name="log", | |
| ) | |
| gr.api( | |
| fn=bulk_log, | |
| api_name="bulk_log", | |
| ) | |
| x_lim = gr.State(None) | |
| last_steps = gr.State({}) | |
| def update_x_lim(select_data: gr.SelectData): | |
| return select_data.index | |
| def update_last_steps(project, runs): | |
| """Update the last step from all runs to detect when new data is available.""" | |
| if not project or not runs: | |
| return {} | |
| return SQLiteStorage.get_max_steps_for_runs(project, runs) | |
| timer.tick( | |
| fn=update_last_steps, | |
| inputs=[project_dd, run_cb], | |
| outputs=last_steps, | |
| show_progress="hidden", | |
| ) | |
| def update_dashboard( | |
| project, | |
| runs, | |
| smoothing_granularity, | |
| metrics_subset, | |
| x_lim_value, | |
| x_axis, | |
| log_scale, | |
| metric_filter, | |
| ): | |
| dfs = [] | |
| images_by_run = {} | |
| original_runs = runs.copy() | |
| for run in runs: | |
| df, images_by_key = load_run_data( | |
| project, run, smoothing_granularity, x_axis, log_scale | |
| ) | |
| if df is not None: | |
| dfs.append(df) | |
| images_by_run[run] = images_by_key | |
| if dfs: | |
| master_df = pd.concat(dfs, ignore_index=True) | |
| else: | |
| master_df = pd.DataFrame() | |
| if master_df.empty: | |
| return | |
| x_column = "step" | |
| if dfs and not dfs[0].empty and "x_axis" in dfs[0].columns: | |
| x_column = dfs[0]["x_axis"].iloc[0] | |
| numeric_cols = master_df.select_dtypes(include="number").columns | |
| numeric_cols = [c for c in numeric_cols if c not in utils.RESERVED_KEYS] | |
| if x_column and x_column in numeric_cols: | |
| numeric_cols.remove(x_column) | |
| if metrics_subset: | |
| numeric_cols = [c for c in numeric_cols if c in metrics_subset] | |
| if metric_filter and metric_filter.strip(): | |
| numeric_cols = filter_metrics_by_regex(list(numeric_cols), metric_filter) | |
| nested_metric_groups = utils.group_metrics_with_subprefixes(list(numeric_cols)) | |
| color_map = utils.get_color_mapping(original_runs, smoothing_granularity > 0) | |
| metric_idx = 0 | |
| for group_name in sorted(nested_metric_groups.keys()): | |
| group_data = nested_metric_groups[group_name] | |
| with gr.Accordion( | |
| label=group_name, | |
| open=True, | |
| key=f"accordion-{group_name}", | |
| preserved_by_key=["value", "open"], | |
| ): | |
| # Render direct metrics at this level | |
| if group_data["direct_metrics"]: | |
| with gr.Draggable( | |
| key=f"row-{group_name}-direct", orientation="row" | |
| ): | |
| for metric_name in group_data["direct_metrics"]: | |
| metric_df = master_df.dropna(subset=[metric_name]) | |
| color = "run" if "run" in metric_df.columns else None | |
| if not metric_df.empty: | |
| plot = gr.LinePlot( | |
| utils.downsample( | |
| metric_df, | |
| x_column, | |
| metric_name, | |
| color, | |
| x_lim_value, | |
| ), | |
| x=x_column, | |
| y=metric_name, | |
| y_title=metric_name.split("/")[-1], | |
| color=color, | |
| color_map=color_map, | |
| title=metric_name, | |
| key=f"plot-{metric_idx}", | |
| preserved_by_key=None, | |
| x_lim=x_lim_value, | |
| show_fullscreen_button=True, | |
| min_width=400, | |
| ) | |
| plot.select( | |
| update_x_lim, | |
| outputs=x_lim, | |
| key=f"select-{metric_idx}", | |
| ) | |
| plot.double_click( | |
| lambda: None, | |
| outputs=x_lim, | |
| key=f"double-{metric_idx}", | |
| ) | |
| metric_idx += 1 | |
| # If there are subgroups, create nested accordions | |
| if group_data["subgroups"]: | |
| for subgroup_name in sorted(group_data["subgroups"].keys()): | |
| subgroup_metrics = group_data["subgroups"][subgroup_name] | |
| with gr.Accordion( | |
| label=subgroup_name, | |
| open=True, | |
| key=f"accordion-{group_name}-{subgroup_name}", | |
| preserved_by_key=["value", "open"], | |
| ): | |
| with gr.Draggable(key=f"row-{group_name}-{subgroup_name}"): | |
| for metric_name in subgroup_metrics: | |
| metric_df = master_df.dropna(subset=[metric_name]) | |
| color = ( | |
| "run" if "run" in metric_df.columns else None | |
| ) | |
| if not metric_df.empty: | |
| plot = gr.LinePlot( | |
| utils.downsample( | |
| metric_df, | |
| x_column, | |
| metric_name, | |
| color, | |
| x_lim_value, | |
| ), | |
| x=x_column, | |
| y=metric_name, | |
| y_title=metric_name.split("/")[-1], | |
| color=color, | |
| color_map=color_map, | |
| title=metric_name, | |
| key=f"plot-{metric_idx}", | |
| preserved_by_key=None, | |
| x_lim=x_lim_value, | |
| show_fullscreen_button=True, | |
| min_width=400, | |
| ) | |
| plot.select( | |
| update_x_lim, | |
| outputs=x_lim, | |
| key=f"select-{metric_idx}", | |
| ) | |
| plot.double_click( | |
| lambda: None, | |
| outputs=x_lim, | |
| key=f"double-{metric_idx}", | |
| ) | |
| metric_idx += 1 | |
| if images_by_run and any(any(images) for images in images_by_run.values()): | |
| create_image_section(images_by_run) | |
| table_cols = master_df.select_dtypes(include="object").columns | |
| table_cols = [c for c in table_cols if c not in utils.RESERVED_KEYS] | |
| if metrics_subset: | |
| table_cols = [c for c in table_cols if c in metrics_subset] | |
| if metric_filter and metric_filter.strip(): | |
| table_cols = filter_metrics_by_regex(list(table_cols), metric_filter) | |
| if len(table_cols) > 0: | |
| with gr.Accordion("tables", open=True): | |
| with gr.Row(key="row"): | |
| for metric_idx, metric_name in enumerate(table_cols): | |
| metric_df = master_df.dropna(subset=[metric_name]) | |
| if not metric_df.empty: | |
| value = metric_df[metric_name].iloc[-1] | |
| if ( | |
| isinstance(value, dict) | |
| and "_type" in value | |
| and value["_type"] == Table.TYPE | |
| ): | |
| try: | |
| df = pd.DataFrame(value["_value"]) | |
| gr.DataFrame( | |
| df, | |
| label=f"{metric_name} (latest)", | |
| key=f"table-{metric_idx}", | |
| wrap=True, | |
| ) | |
| except Exception as e: | |
| gr.Warning( | |
| f"Column {metric_name} failed to render as a table: {e}" | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(allowed_paths=[utils.TRACKIO_LOGO_DIR], show_api=False, show_error=True) | |
