Spaces:
Sleeping
Sleeping
import fcntl | |
import json | |
import os | |
import sqlite3 | |
import time | |
from datetime import datetime | |
from pathlib import Path | |
from threading import Lock | |
import huggingface_hub as hf | |
import pandas as pd | |
try: # absolute imports when installed | |
from trackio.commit_scheduler import CommitScheduler | |
from trackio.dummy_commit_scheduler import DummyCommitScheduler | |
from trackio.utils import ( | |
TRACKIO_DIR, | |
deserialize_values, | |
serialize_values, | |
) | |
except Exception: # relative imports for local execution on Spaces | |
from commit_scheduler import CommitScheduler | |
from dummy_commit_scheduler import DummyCommitScheduler | |
from utils import TRACKIO_DIR, deserialize_values, serialize_values | |
class ProcessLock: | |
"""A simple file-based lock that works across processes.""" | |
def __init__(self, lockfile_path: Path): | |
self.lockfile_path = lockfile_path | |
self.lockfile = None | |
def __enter__(self): | |
"""Acquire the lock with retry logic.""" | |
self.lockfile_path.parent.mkdir(parents=True, exist_ok=True) | |
self.lockfile = open(self.lockfile_path, "w") | |
max_retries = 100 | |
for attempt in range(max_retries): | |
try: | |
fcntl.flock(self.lockfile.fileno(), fcntl.LOCK_EX | fcntl.LOCK_NB) | |
return self | |
except IOError: | |
if attempt < max_retries - 1: | |
time.sleep(0.1) | |
else: | |
raise IOError("Could not acquire database lock after 10 seconds") | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
"""Release the lock.""" | |
if self.lockfile: | |
fcntl.flock(self.lockfile.fileno(), fcntl.LOCK_UN) | |
self.lockfile.close() | |
class SQLiteStorage: | |
_dataset_import_attempted = False | |
_current_scheduler: CommitScheduler | DummyCommitScheduler | None = None | |
_scheduler_lock = Lock() | |
def _get_connection(db_path: Path) -> sqlite3.Connection: | |
conn = sqlite3.connect(str(db_path), timeout=30.0) | |
conn.execute("PRAGMA journal_mode = WAL") | |
conn.row_factory = sqlite3.Row | |
return conn | |
def _get_process_lock(project: str) -> ProcessLock: | |
lockfile_path = TRACKIO_DIR / f"{project}.lock" | |
return ProcessLock(lockfile_path) | |
def get_project_db_filename(project: str) -> Path: | |
"""Get the database filename for a specific project.""" | |
safe_project_name = "".join( | |
c for c in project if c.isalnum() or c in ("-", "_") | |
).rstrip() | |
if not safe_project_name: | |
safe_project_name = "default" | |
return f"{safe_project_name}.db" | |
def get_project_db_path(project: str) -> Path: | |
"""Get the database path for a specific project.""" | |
filename = SQLiteStorage.get_project_db_filename(project) | |
return TRACKIO_DIR / filename | |
def init_db(project: str) -> Path: | |
""" | |
Initialize the SQLite database with required tables. | |
If there is a dataset ID provided, copies from that dataset instead. | |
Returns the database path. | |
""" | |
db_path = SQLiteStorage.get_project_db_path(project) | |
db_path.parent.mkdir(parents=True, exist_ok=True) | |
with SQLiteStorage._get_process_lock(project): | |
with sqlite3.connect(db_path, timeout=30.0) as conn: | |
conn.execute("PRAGMA journal_mode = WAL") | |
cursor = conn.cursor() | |
cursor.execute(""" | |
CREATE TABLE IF NOT EXISTS metrics ( | |
id INTEGER PRIMARY KEY AUTOINCREMENT, | |
timestamp TEXT NOT NULL, | |
run_name TEXT NOT NULL, | |
step INTEGER NOT NULL, | |
metrics TEXT NOT NULL | |
) | |
""") | |
cursor.execute( | |
""" | |
CREATE INDEX IF NOT EXISTS idx_metrics_run_step | |
ON metrics(run_name, step) | |
""" | |
) | |
conn.commit() | |
return db_path | |
def export_to_parquet(): | |
""" | |
Exports all projects' DB files as Parquet under the same path but with extension ".parquet". | |
""" | |
# don't attempt to export (potentially wrong/blank) data before importing for the first time | |
if not SQLiteStorage._dataset_import_attempted: | |
return | |
all_paths = os.listdir(TRACKIO_DIR) | |
db_paths = [f for f in all_paths if f.endswith(".db")] | |
for db_path in db_paths: | |
db_path = TRACKIO_DIR / db_path | |
parquet_path = db_path.with_suffix(".parquet") | |
if (not parquet_path.exists()) or ( | |
db_path.stat().st_mtime > parquet_path.stat().st_mtime | |
): | |
with sqlite3.connect(db_path) as conn: | |
df = pd.read_sql("SELECT * from metrics", conn) | |
# break out the single JSON metrics column into individual columns | |
metrics = df["metrics"].copy() | |
metrics = pd.DataFrame( | |
metrics.apply( | |
lambda x: deserialize_values(json.loads(x)) | |
).values.tolist(), | |
index=df.index, | |
) | |
del df["metrics"] | |
for col in metrics.columns: | |
df[col] = metrics[col] | |
df.to_parquet(parquet_path) | |
def import_from_parquet(): | |
""" | |
Imports to all DB files that have matching files under the same path but with extension ".parquet". | |
""" | |
all_paths = os.listdir(TRACKIO_DIR) | |
parquet_paths = [f for f in all_paths if f.endswith(".parquet")] | |
for parquet_path in parquet_paths: | |
parquet_path = TRACKIO_DIR / parquet_path | |
db_path = parquet_path.with_suffix(".db") | |
df = pd.read_parquet(parquet_path) | |
with sqlite3.connect(db_path) as conn: | |
# fix up df to have a single JSON metrics column | |
if "metrics" not in df.columns: | |
# separate other columns from metrics | |
metrics = df.copy() | |
other_cols = ["id", "timestamp", "run_name", "step"] | |
df = df[other_cols] | |
for col in other_cols: | |
del metrics[col] | |
# combine them all into a single metrics col | |
metrics = json.loads(metrics.to_json(orient="records")) | |
df["metrics"] = [ | |
json.dumps(serialize_values(row)) for row in metrics | |
] | |
df.to_sql("metrics", conn, if_exists="replace", index=False) | |
def get_scheduler(): | |
""" | |
Get the scheduler for the database based on the environment variables. | |
This applies to both local and Spaces. | |
""" | |
with SQLiteStorage._scheduler_lock: | |
if SQLiteStorage._current_scheduler is not None: | |
return SQLiteStorage._current_scheduler | |
hf_token = os.environ.get("HF_TOKEN") | |
dataset_id = os.environ.get("TRACKIO_DATASET_ID") | |
space_repo_name = os.environ.get("SPACE_REPO_NAME") | |
if dataset_id is None or space_repo_name is None: | |
scheduler = DummyCommitScheduler() | |
else: | |
scheduler = CommitScheduler( | |
repo_id=dataset_id, | |
repo_type="dataset", | |
folder_path=TRACKIO_DIR, | |
private=True, | |
allow_patterns=["*.parquet", "media/**/*"], | |
squash_history=True, | |
token=hf_token, | |
on_before_commit=SQLiteStorage.export_to_parquet, | |
) | |
SQLiteStorage._current_scheduler = scheduler | |
return scheduler | |
def log(project: str, run: str, metrics: dict, step: int | None = None): | |
""" | |
Safely log metrics to the database. Before logging, this method will ensure the database exists | |
and is set up with the correct tables. It also uses a cross-process lock to prevent | |
database locking errors when multiple processes access the same database. | |
This method is not used in the latest versions of Trackio (replaced by bulk_log) but | |
is kept for backwards compatibility for users who are connecting to a newer version of | |
a Trackio Spaces dashboard with an older version of Trackio installed locally. | |
""" | |
db_path = SQLiteStorage.init_db(project) | |
with SQLiteStorage._get_process_lock(project): | |
with SQLiteStorage._get_connection(db_path) as conn: | |
cursor = conn.cursor() | |
cursor.execute( | |
""" | |
SELECT MAX(step) | |
FROM metrics | |
WHERE run_name = ? | |
""", | |
(run,), | |
) | |
last_step = cursor.fetchone()[0] | |
if step is None: | |
current_step = 0 if last_step is None else last_step + 1 | |
else: | |
current_step = step | |
current_timestamp = datetime.now().isoformat() | |
cursor.execute( | |
""" | |
INSERT INTO metrics | |
(timestamp, run_name, step, metrics) | |
VALUES (?, ?, ?, ?) | |
""", | |
( | |
current_timestamp, | |
run, | |
current_step, | |
json.dumps(serialize_values(metrics)), | |
), | |
) | |
conn.commit() | |
def bulk_log( | |
project: str, | |
run: str, | |
metrics_list: list[dict], | |
steps: list[int] | None = None, | |
timestamps: list[str] | None = None, | |
): | |
""" | |
Safely log bulk metrics to the database. Before logging, this method will ensure the database exists | |
and is set up with the correct tables. It also uses a cross-process lock to prevent | |
database locking errors when multiple processes access the same database. | |
""" | |
if not metrics_list: | |
return | |
if timestamps is None: | |
timestamps = [datetime.now().isoformat()] * len(metrics_list) | |
db_path = SQLiteStorage.init_db(project) | |
with SQLiteStorage._get_process_lock(project): | |
with SQLiteStorage._get_connection(db_path) as conn: | |
cursor = conn.cursor() | |
if steps is None: | |
steps = list(range(len(metrics_list))) | |
elif any(s is None for s in steps): | |
cursor.execute( | |
"SELECT MAX(step) FROM metrics WHERE run_name = ?", (run,) | |
) | |
last_step = cursor.fetchone()[0] | |
current_step = 0 if last_step is None else last_step + 1 | |
processed_steps = [] | |
for step in steps: | |
if step is None: | |
processed_steps.append(current_step) | |
current_step += 1 | |
else: | |
processed_steps.append(step) | |
steps = processed_steps | |
if len(metrics_list) != len(steps) or len(metrics_list) != len( | |
timestamps | |
): | |
raise ValueError( | |
"metrics_list, steps, and timestamps must have the same length" | |
) | |
data = [] | |
for i, metrics in enumerate(metrics_list): | |
data.append( | |
( | |
timestamps[i], | |
run, | |
steps[i], | |
json.dumps(serialize_values(metrics)), | |
) | |
) | |
cursor.executemany( | |
""" | |
INSERT INTO metrics | |
(timestamp, run_name, step, metrics) | |
VALUES (?, ?, ?, ?) | |
""", | |
data, | |
) | |
conn.commit() | |
def get_logs(project: str, run: str) -> list[dict]: | |
"""Retrieve logs for a specific run. Logs include the step count (int) and the timestamp (datetime object).""" | |
db_path = SQLiteStorage.get_project_db_path(project) | |
if not db_path.exists(): | |
return [] | |
with SQLiteStorage._get_connection(db_path) as conn: | |
cursor = conn.cursor() | |
cursor.execute( | |
""" | |
SELECT timestamp, step, metrics | |
FROM metrics | |
WHERE run_name = ? | |
ORDER BY timestamp | |
""", | |
(run,), | |
) | |
rows = cursor.fetchall() | |
results = [] | |
for row in rows: | |
metrics = json.loads(row["metrics"]) | |
metrics = deserialize_values(metrics) | |
metrics["timestamp"] = row["timestamp"] | |
metrics["step"] = row["step"] | |
results.append(metrics) | |
return results | |
def load_from_dataset(): | |
dataset_id = os.environ.get("TRACKIO_DATASET_ID") | |
space_repo_name = os.environ.get("SPACE_REPO_NAME") | |
if dataset_id is not None and space_repo_name is not None: | |
hfapi = hf.HfApi() | |
updated = False | |
if not TRACKIO_DIR.exists(): | |
TRACKIO_DIR.mkdir(parents=True, exist_ok=True) | |
with SQLiteStorage.get_scheduler().lock: | |
try: | |
files = hfapi.list_repo_files(dataset_id, repo_type="dataset") | |
for file in files: | |
# Download parquet and media assets | |
if not (file.endswith(".parquet") or file.startswith("media/")): | |
continue | |
if (TRACKIO_DIR / file).exists(): | |
continue | |
hf.hf_hub_download( | |
dataset_id, file, repo_type="dataset", local_dir=TRACKIO_DIR | |
) | |
updated = True | |
except hf.errors.EntryNotFoundError: | |
pass | |
except hf.errors.RepositoryNotFoundError: | |
pass | |
if updated: | |
SQLiteStorage.import_from_parquet() | |
SQLiteStorage._dataset_import_attempted = True | |
def get_projects() -> list[str]: | |
""" | |
Get list of all projects by scanning the database files in the trackio directory. | |
""" | |
if not SQLiteStorage._dataset_import_attempted: | |
SQLiteStorage.load_from_dataset() | |
projects: set[str] = set() | |
if not TRACKIO_DIR.exists(): | |
return [] | |
for db_file in TRACKIO_DIR.glob("*.db"): | |
project_name = db_file.stem | |
projects.add(project_name) | |
return sorted(projects) | |
def get_runs(project: str) -> list[str]: | |
"""Get list of all runs for a project.""" | |
db_path = SQLiteStorage.get_project_db_path(project) | |
if not db_path.exists(): | |
return [] | |
with SQLiteStorage._get_connection(db_path) as conn: | |
cursor = conn.cursor() | |
cursor.execute( | |
"SELECT DISTINCT run_name FROM metrics", | |
) | |
return [row[0] for row in cursor.fetchall()] | |
def get_max_steps_for_runs(project: str) -> dict[str, int]: | |
"""Get the maximum step for each run in a project.""" | |
db_path = SQLiteStorage.get_project_db_path(project) | |
if not db_path.exists(): | |
return {} | |
with SQLiteStorage._get_connection(db_path) as conn: | |
cursor = conn.cursor() | |
cursor.execute( | |
""" | |
SELECT run_name, MAX(step) as max_step | |
FROM metrics | |
GROUP BY run_name | |
""" | |
) | |
results = {} | |
for row in cursor.fetchall(): | |
results[row["run_name"]] = row["max_step"] | |
return results | |
def finish(self): | |
"""Cleanup when run is finished.""" | |
pass | |