Spaces:
Sleeping
Sleeping
import importlib.metadata | |
import io | |
import os | |
import time | |
from importlib.resources import files | |
from pathlib import Path | |
import gradio | |
import huggingface_hub | |
from gradio_client import Client, handle_file | |
from httpx import ReadTimeout | |
from huggingface_hub.errors import RepositoryNotFoundError | |
from requests import HTTPError | |
import trackio | |
from trackio.sqlite_storage import SQLiteStorage | |
SPACE_URL = "https://huggingface.co/spaces/{space_id}" | |
def _is_trackio_installed_from_source() -> bool: | |
"""Check if trackio is installed from source/editable install vs PyPI.""" | |
try: | |
trackio_file = trackio.__file__ | |
if "site-packages" not in trackio_file: | |
return True | |
dist = importlib.metadata.distribution("trackio") | |
if dist.files: | |
files = list(dist.files) | |
has_pth = any(".pth" in str(f) for f in files) | |
if has_pth: | |
return True | |
return False | |
except ( | |
AttributeError, | |
importlib.metadata.PackageNotFoundError, | |
importlib.metadata.MetadataError, | |
ValueError, | |
TypeError, | |
): | |
return True | |
def deploy_as_space( | |
space_id: str, | |
space_storage: huggingface_hub.SpaceStorage | None = None, | |
dataset_id: str | None = None, | |
): | |
if ( | |
os.getenv("SYSTEM") == "spaces" | |
): # in case a repo with this function is uploaded to spaces | |
return | |
trackio_path = files("trackio") | |
hf_api = huggingface_hub.HfApi() | |
try: | |
create_kwargs = { | |
"repo_id": space_id, | |
"space_sdk": "gradio", | |
"repo_type": "space", | |
"exist_ok": True, | |
} | |
if space_storage is not None: | |
create_kwargs["space_storage"] = space_storage | |
huggingface_hub.create_repo(**create_kwargs) | |
except HTTPError as e: | |
if e.response.status_code in [401, 403]: # unauthorized or forbidden | |
print("Need 'write' access token to create a Spaces repo.") | |
huggingface_hub.login(add_to_git_credential=False) | |
huggingface_hub.create_repo(**create_kwargs) | |
else: | |
raise ValueError(f"Failed to create Space: {e}") | |
with open(Path(trackio_path, "README.md"), "r") as f: | |
readme_content = f.read() | |
readme_content = readme_content.replace("{GRADIO_VERSION}", gradio.__version__) | |
readme_buffer = io.BytesIO(readme_content.encode("utf-8")) | |
hf_api.upload_file( | |
path_or_fileobj=readme_buffer, | |
path_in_repo="README.md", | |
repo_id=space_id, | |
repo_type="space", | |
) | |
# We can assume pandas, gradio, and huggingface-hub are already installed in a Gradio Space. | |
# Make sure necessary dependencies are installed by creating a requirements.txt. | |
is_source_install = _is_trackio_installed_from_source() | |
if is_source_install: | |
requirements_content = """pyarrow>=21.0""" | |
else: | |
requirements_content = f"""pyarrow>=21.0 | |
trackio=={trackio.__version__}""" | |
requirements_buffer = io.BytesIO(requirements_content.encode("utf-8")) | |
hf_api.upload_file( | |
path_or_fileobj=requirements_buffer, | |
path_in_repo="requirements.txt", | |
repo_id=space_id, | |
repo_type="space", | |
) | |
huggingface_hub.utils.disable_progress_bars() | |
if is_source_install: | |
hf_api.upload_folder( | |
repo_id=space_id, | |
repo_type="space", | |
folder_path=trackio_path, | |
ignore_patterns=["README.md"], | |
) | |
else: | |
app_file_content = """import trackio | |
trackio.show()""" | |
app_file_buffer = io.BytesIO(app_file_content.encode("utf-8")) | |
hf_api.upload_file( | |
path_or_fileobj=app_file_buffer, | |
path_in_repo="ui.py", | |
repo_id=space_id, | |
repo_type="space", | |
) | |
if hf_token := huggingface_hub.utils.get_token(): | |
huggingface_hub.add_space_secret(space_id, "HF_TOKEN", hf_token) | |
if dataset_id is not None: | |
huggingface_hub.add_space_variable(space_id, "TRACKIO_DATASET_ID", dataset_id) | |
def create_space_if_not_exists( | |
space_id: str, | |
space_storage: huggingface_hub.SpaceStorage | None = None, | |
dataset_id: str | None = None, | |
) -> None: | |
""" | |
Creates a new Hugging Face Space if it does not exist. If a dataset_id is provided, it will be added as a space variable. | |
Args: | |
space_id: The ID of the Space to create. | |
dataset_id: The ID of the Dataset to add to the Space. | |
""" | |
if "/" not in space_id: | |
raise ValueError( | |
f"Invalid space ID: {space_id}. Must be in the format: username/reponame or orgname/reponame." | |
) | |
if dataset_id is not None and "/" not in dataset_id: | |
raise ValueError( | |
f"Invalid dataset ID: {dataset_id}. Must be in the format: username/datasetname or orgname/datasetname." | |
) | |
try: | |
huggingface_hub.repo_info(space_id, repo_type="space") | |
print(f"* Found existing space: {SPACE_URL.format(space_id=space_id)}") | |
if dataset_id is not None: | |
huggingface_hub.add_space_variable( | |
space_id, "TRACKIO_DATASET_ID", dataset_id | |
) | |
return | |
except RepositoryNotFoundError: | |
pass | |
except HTTPError as e: | |
if e.response.status_code in [401, 403]: # unauthorized or forbidden | |
print("Need 'write' access token to create a Spaces repo.") | |
huggingface_hub.login(add_to_git_credential=False) | |
huggingface_hub.add_space_variable( | |
space_id, "TRACKIO_DATASET_ID", dataset_id | |
) | |
else: | |
raise ValueError(f"Failed to create Space: {e}") | |
print(f"* Creating new space: {SPACE_URL.format(space_id=space_id)}") | |
deploy_as_space(space_id, space_storage, dataset_id) | |
def wait_until_space_exists( | |
space_id: str, | |
) -> None: | |
""" | |
Blocks the current thread until the space exists. | |
May raise a TimeoutError if this takes quite a while. | |
Args: | |
space_id: The ID of the Space to wait for. | |
""" | |
delay = 1 | |
for _ in range(10): | |
try: | |
Client(space_id, verbose=False) | |
return | |
except (ReadTimeout, ValueError): | |
time.sleep(delay) | |
delay = min(delay * 2, 30) | |
raise TimeoutError("Waiting for space to exist took longer than expected") | |
def upload_db_to_space(project: str, space_id: str) -> None: | |
""" | |
Uploads the database of a local Trackio project to a Hugging Face Space. | |
Args: | |
project: The name of the project to upload. | |
space_id: The ID of the Space to upload to. | |
""" | |
db_path = SQLiteStorage.get_project_db_path(project) | |
client = Client(space_id, verbose=False) | |
client.predict( | |
api_name="/upload_db_to_space", | |
project=project, | |
uploaded_db=handle_file(db_path), | |
hf_token=huggingface_hub.utils.get_token(), | |
) | |