Spaces:
Runtime error
Runtime error
Commit
Β·
003d24d
1
Parent(s):
0d4db15
Updates
Browse files
app.py
CHANGED
|
@@ -1,55 +1,167 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import requests
|
| 3 |
import pandas as pd
|
| 4 |
-
from huggingface_hub.hf_api import SpaceInfo
|
| 5 |
from huggingface_hub import HfApi, hf_hub_download
|
| 6 |
from huggingface_hub.repocard import metadata_load
|
| 7 |
|
| 8 |
path = f"https://huggingface.co/api/spaces"
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
def make_clickable_model(model_name):
|
| 24 |
-
#
|
| 25 |
-
model_name_show =
|
| 26 |
link = "https://huggingface.co/" + model_name
|
| 27 |
-
return
|
|
|
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
api = HfApi()
|
| 32 |
models = api.list_models(filter="mteb")
|
| 33 |
df_list = []
|
| 34 |
for model in models:
|
| 35 |
readme_path = hf_hub_download(model.modelId, filename="README.md")
|
| 36 |
meta = metadata_load(readme_path)
|
| 37 |
-
#
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
# Multilingual
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
out = {k: v for d in out for k, v in d.items()}
|
| 54 |
out["Model"] = make_clickable_model(model.modelId)
|
| 55 |
df_list.append(out)
|
|
@@ -58,31 +170,91 @@ def get_mteb_data(task="Clustering", metric="v_measure", lang=None):
|
|
| 58 |
cols = sorted(list(df.columns))
|
| 59 |
cols.insert(0, cols.pop(cols.index("Model")))
|
| 60 |
df = df[cols]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
df.fillna('', inplace=True)
|
| 63 |
-
return df.astype(str) # Cast to str as Gradio does not accept floats
|
| 64 |
|
| 65 |
block = gr.Blocks()
|
| 66 |
|
| 67 |
-
with block:
|
| 68 |
-
gr.Markdown(
|
|
|
|
|
|
|
| 69 |
with gr.Tabs():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
with gr.TabItem("Classification"):
|
| 71 |
with gr.TabItem("English"):
|
| 72 |
with gr.Row():
|
| 73 |
gr.Markdown("""Leaderboard for Classification""")
|
| 74 |
with gr.Row():
|
| 75 |
data_classification_en = gr.components.Dataframe(
|
| 76 |
-
|
|
|
|
| 77 |
type="pandas",
|
| 78 |
-
col_count=(
|
| 79 |
)
|
| 80 |
with gr.Row():
|
| 81 |
data_run = gr.Button("Refresh")
|
| 82 |
task_classification_en = gr.Variable(value="Classification")
|
| 83 |
metric_classification_en = gr.Variable(value="accuracy")
|
| 84 |
lang_classification_en = gr.Variable(value=["en"])
|
| 85 |
-
data_run.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
with gr.TabItem("Multilingual"):
|
| 87 |
with gr.Row():
|
| 88 |
gr.Markdown("""Multilingual Classification""")
|
|
@@ -95,7 +267,11 @@ with block:
|
|
| 95 |
data_run = gr.Button("Refresh")
|
| 96 |
task_classification = gr.Variable(value="Classification")
|
| 97 |
metric_classification = gr.Variable(value="accuracy")
|
| 98 |
-
data_run.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
with gr.TabItem("Clustering"):
|
| 100 |
with gr.Row():
|
| 101 |
gr.Markdown("""Leaderboard for Clustering""")
|
|
@@ -108,7 +284,11 @@ with block:
|
|
| 108 |
data_run = gr.Button("Refresh")
|
| 109 |
task_clustering = gr.Variable(value="Clustering")
|
| 110 |
metric_clustering = gr.Variable(value="v_measure")
|
| 111 |
-
data_run.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
with gr.TabItem("Retrieval"):
|
| 113 |
with gr.Row():
|
| 114 |
gr.Markdown("""Leaderboard for Retrieval""")
|
|
@@ -121,7 +301,9 @@ with block:
|
|
| 121 |
data_run = gr.Button("Refresh")
|
| 122 |
task_retrieval = gr.Variable(value="Retrieval")
|
| 123 |
metric_retrieval = gr.Variable(value="ndcg_at_10")
|
| 124 |
-
data_run.click(
|
|
|
|
|
|
|
| 125 |
with gr.TabItem("Reranking"):
|
| 126 |
with gr.Row():
|
| 127 |
gr.Markdown("""Leaderboard for Reranking""")
|
|
@@ -129,13 +311,15 @@ with block:
|
|
| 129 |
data_reranking = gr.components.Dataframe(
|
| 130 |
datatype=["markdown"] * 500,
|
| 131 |
type="pandas",
|
| 132 |
-
#col_count=(12, "fixed"),
|
| 133 |
)
|
| 134 |
with gr.Row():
|
| 135 |
data_run = gr.Button("Refresh")
|
| 136 |
task_reranking = gr.Variable(value="Reranking")
|
| 137 |
metric_reranking = gr.Variable(value="map")
|
| 138 |
-
data_run.click(
|
|
|
|
|
|
|
| 139 |
with gr.TabItem("STS"):
|
| 140 |
with gr.TabItem("English"):
|
| 141 |
with gr.Row():
|
|
@@ -150,7 +334,11 @@ with block:
|
|
| 150 |
task_sts_en = gr.Variable(value="STS")
|
| 151 |
metric_sts_en = gr.Variable(value="cos_sim_spearman")
|
| 152 |
lang_sts_en = gr.Variable(value=["en", "en-en"])
|
| 153 |
-
data_run.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
with gr.TabItem("Multilingual"):
|
| 155 |
with gr.Row():
|
| 156 |
gr.Markdown("""Leaderboard for STS""")
|
|
@@ -176,23 +364,29 @@ with block:
|
|
| 176 |
data_run = gr.Button("Refresh")
|
| 177 |
task_summarization = gr.Variable(value="Summarization")
|
| 178 |
metric_summarization = gr.Variable(value="cos_sim_spearman")
|
| 179 |
-
data_run.click(
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
data_run = gr.Button("Refresh")
|
| 185 |
-
data_run.click(get_blocks_party_spaces, inputs=None, outputs=data)
|
| 186 |
# running the function on page load in addition to when the button is clicked
|
| 187 |
-
block.load(
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
block.load(get_mteb_data, inputs=[task_clustering, metric_clustering], outputs=data_clustering)
|
| 190 |
block.load(get_mteb_data, inputs=[task_retrieval, metric_retrieval], outputs=data_retrieval)
|
| 191 |
block.load(get_mteb_data, inputs=[task_reranking, metric_reranking], outputs=data_reranking)
|
| 192 |
-
block.load(get_mteb_data, inputs=[task_sts, metric_sts], outputs=data_sts)
|
| 193 |
-
block.load(
|
| 194 |
-
|
| 195 |
-
|
| 196 |
|
| 197 |
block.launch()
|
| 198 |
-
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import pandas as pd
|
|
|
|
| 3 |
from huggingface_hub import HfApi, hf_hub_download
|
| 4 |
from huggingface_hub.repocard import metadata_load
|
| 5 |
|
| 6 |
path = f"https://huggingface.co/api/spaces"
|
| 7 |
|
| 8 |
+
TASKS = [
|
| 9 |
+
"BitextMining",
|
| 10 |
+
"Classification",
|
| 11 |
+
"Clustering",
|
| 12 |
+
"PairClassification",
|
| 13 |
+
"Reranking",
|
| 14 |
+
"Retrieval",
|
| 15 |
+
"STS",
|
| 16 |
+
"Summarization",
|
| 17 |
+
]
|
| 18 |
+
|
| 19 |
+
TASK_LIST_CLASSIFICATION = [
|
| 20 |
+
"AmazonCounterfactualClassification (en)",
|
| 21 |
+
"AmazonPolarityClassification",
|
| 22 |
+
"AmazonReviewsClassification (en)",
|
| 23 |
+
"Banking77Classification",
|
| 24 |
+
"EmotionClassification",
|
| 25 |
+
"ImdbClassification",
|
| 26 |
+
"MassiveIntentClassification (en)",
|
| 27 |
+
"MassiveScenarioClassification (en)",
|
| 28 |
+
"MTOPDomainClassification (en)",
|
| 29 |
+
"MTOPIntentClassification (en)",
|
| 30 |
+
"ToxicConversationsClassification",
|
| 31 |
+
"TweetSentimentExtractionClassification",
|
| 32 |
+
]
|
| 33 |
+
|
| 34 |
+
TASK_LIST_CLUSTERING = [
|
| 35 |
+
"ArxivClusteringP2P",
|
| 36 |
+
"ArxivClusteringS2S",
|
| 37 |
+
"BiorxivClusteringP2P",
|
| 38 |
+
"BiorxivClusteringS2S",
|
| 39 |
+
"MedrxivClusteringP2P",
|
| 40 |
+
"MedrxivClusteringS2S",
|
| 41 |
+
"RedditClustering",
|
| 42 |
+
"RedditClusteringP2P",
|
| 43 |
+
"StackExchangeClustering",
|
| 44 |
+
"StackExchangeClusteringP2P",
|
| 45 |
+
"TwentyNewsgroupsClustering",
|
| 46 |
+
]
|
| 47 |
+
|
| 48 |
+
TASK_LIST_PAIR_CLASSIFICATION = [
|
| 49 |
+
"SprintDuplicateQuestions",
|
| 50 |
+
"TwitterSemEval2015",
|
| 51 |
+
"TwitterURLCorpus",
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
+
TASK_LIST_RERANKING = [
|
| 55 |
+
"AskUbuntuDupQuestions",
|
| 56 |
+
"MindSmallReranking",
|
| 57 |
+
"SciDocsRR",
|
| 58 |
+
"StackOverflowDupQuestions",
|
| 59 |
+
]
|
| 60 |
+
|
| 61 |
+
TASK_LIST_RETRIEVAL = [
|
| 62 |
+
"ArguAna",
|
| 63 |
+
"ClimateFEVER",
|
| 64 |
+
"CQADupstackRetrieval",
|
| 65 |
+
"DBPedia",
|
| 66 |
+
"FEVER",
|
| 67 |
+
"FiQA2018",
|
| 68 |
+
"HotpotQA",
|
| 69 |
+
"MSMARCO",
|
| 70 |
+
"NFCorpus",
|
| 71 |
+
"NQ",
|
| 72 |
+
"QuoraRetrieval",
|
| 73 |
+
"SCIDOCS",
|
| 74 |
+
"SciFact",
|
| 75 |
+
"Touche2020",
|
| 76 |
+
"TRECCOVID",
|
| 77 |
+
]
|
| 78 |
+
|
| 79 |
+
TASK_LIST_STS = [
|
| 80 |
+
"BIOSSES",
|
| 81 |
+
"SICK-R",
|
| 82 |
+
"STS12",
|
| 83 |
+
"STS13",
|
| 84 |
+
"STS14",
|
| 85 |
+
"STS15",
|
| 86 |
+
"STS16",
|
| 87 |
+
"STS17 (en-en)",
|
| 88 |
+
"STS22 (en)",
|
| 89 |
+
"STSBenchmark",
|
| 90 |
+
]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
TASK_LIST_SUMMARIZATION = [
|
| 94 |
+
"SummEval",
|
| 95 |
+
]
|
| 96 |
+
|
| 97 |
+
TASK_LIST_EN = TASK_LIST_CLASSIFICATION + TASK_LIST_CLUSTERING + TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_RERANKING + TASK_LIST_RETRIEVAL + TASK_LIST_STS + TASK_LIST_SUMMARIZATION
|
| 98 |
+
|
| 99 |
+
TASK_TO_TASK_LIST = {}
|
| 100 |
+
|
| 101 |
+
|
| 102 |
|
| 103 |
def make_clickable_model(model_name):
|
| 104 |
+
# Remove user from model name
|
| 105 |
+
model_name_show = " ".join(model_name.split("/")[1:])
|
| 106 |
link = "https://huggingface.co/" + model_name
|
| 107 |
+
return (
|
| 108 |
+
f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name_show}</a>'
|
| 109 |
+
)
|
| 110 |
|
| 111 |
|
| 112 |
+
TASK_TO_METRIC = {
|
| 113 |
+
"BitextMining": "f1",
|
| 114 |
+
"Clustering": "v_measure",
|
| 115 |
+
"Classification": "accuracy",
|
| 116 |
+
"PairClassification": "cos_sim_ap",
|
| 117 |
+
"Reranking": "map",
|
| 118 |
+
"Retrieval": "ndcg_at_10",
|
| 119 |
+
"STS": "cos_sim_spearman",
|
| 120 |
+
"Summarization": "cos_sim_spearman",
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
def get_mteb_data(tasks=["Clustering"], metric="v_measure", langs=[], cast_to_str=True, task_to_metric=TASK_TO_METRIC):
|
| 124 |
api = HfApi()
|
| 125 |
models = api.list_models(filter="mteb")
|
| 126 |
df_list = []
|
| 127 |
for model in models:
|
| 128 |
readme_path = hf_hub_download(model.modelId, filename="README.md")
|
| 129 |
meta = metadata_load(readme_path)
|
| 130 |
+
# meta['model-index'][0]["results"] is list of elements like:
|
| 131 |
+
# {
|
| 132 |
+
# "task": {"type": "Classification"},
|
| 133 |
+
# "dataset": {
|
| 134 |
+
# "type": "mteb/amazon_massive_intent",
|
| 135 |
+
# "name": "MTEB MassiveIntentClassification (nb)",
|
| 136 |
+
# "config": "nb",
|
| 137 |
+
# "split": "test",
|
| 138 |
+
# },
|
| 139 |
+
# "metrics": [
|
| 140 |
+
# {"type": "accuracy", "value": 39.81506388702084},
|
| 141 |
+
# {"type": "f1", "value": 38.809586587791664},
|
| 142 |
+
# ],
|
| 143 |
+
# },
|
| 144 |
+
|
| 145 |
+
# Use "get" instead of dict indexing to skip incompat metadata instead of erroring out
|
| 146 |
+
#if langs is None:
|
| 147 |
+
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and (sub_res.get("dataset", {}).get("config", "default") in ("default", *langs))]
|
| 148 |
+
out = [{res["dataset"]["name"].replace("MTEB ", ""): [round(score["value"], 2) for score in res["metrics"] if score["type"] == task_to_metric.get(res["task"]["type"])][0]} for res in task_results]
|
| 149 |
+
#else:
|
| 150 |
# Multilingual
|
| 151 |
+
# out = list(
|
| 152 |
+
# map(
|
| 153 |
+
# lambda x: {
|
| 154 |
+
# x["dataset"]["name"].replace("MTEB ", ""): round(
|
| 155 |
+
# list(filter(lambda x: x["type"] == metric, x["metrics"]))[0]["value"], 2
|
| 156 |
+
# )
|
| 157 |
+
# },
|
| 158 |
+
# filter(
|
| 159 |
+
# lambda x: (x.get("task", {}).get("type", "") in tasks)
|
| 160 |
+
# and (x.get("dataset", {}).get("config", "") in ("default", *langs)),
|
| 161 |
+
# meta["model-index"][0]["results"],
|
| 162 |
+
# ),
|
| 163 |
+
# )
|
| 164 |
+
# )
|
| 165 |
out = {k: v for d in out for k, v in d.items()}
|
| 166 |
out["Model"] = make_clickable_model(model.modelId)
|
| 167 |
df_list.append(out)
|
|
|
|
| 170 |
cols = sorted(list(df.columns))
|
| 171 |
cols.insert(0, cols.pop(cols.index("Model")))
|
| 172 |
df = df[cols]
|
| 173 |
+
# df.insert(1, "Average", df.mean(axis=1, skipna=False))
|
| 174 |
+
df.fillna("", inplace=True)
|
| 175 |
+
if cast_to_str:
|
| 176 |
+
return df.astype(str) # Cast to str as Gradio does not accept floats
|
| 177 |
+
return df
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
DATA_OVERALL = get_mteb_data(
|
| 181 |
+
tasks=[
|
| 182 |
+
"Classification",
|
| 183 |
+
"Clustering",
|
| 184 |
+
"PairClassification",
|
| 185 |
+
"Reranking",
|
| 186 |
+
"Retrieval",
|
| 187 |
+
"STS",
|
| 188 |
+
"Summarization",
|
| 189 |
+
],
|
| 190 |
+
langs=["en", "en-en"],
|
| 191 |
+
cast_to_str=False
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
DATA_OVERALL.insert(1, "Average", DATA_OVERALL[TASK_LIST_EN].mean(axis=1, skipna=False))
|
| 195 |
+
DATA_OVERALL.insert(2, "Classification Average", DATA_OVERALL[TASK_LIST_CLASSIFICATION].mean(axis=1, skipna=False))
|
| 196 |
+
DATA_OVERALL.insert(3, "Clustering Average", DATA_OVERALL[TASK_LIST_CLUSTERING].mean(axis=1, skipna=False))
|
| 197 |
+
DATA_OVERALL.insert(4, "Pair Classification Average", DATA_OVERALL[TASK_LIST_PAIR_CLASSIFICATION].mean(axis=1, skipna=False))
|
| 198 |
+
DATA_OVERALL.insert(5, "Reranking Average", DATA_OVERALL[TASK_LIST_RERANKING].mean(axis=1, skipna=False))
|
| 199 |
+
DATA_OVERALL.insert(6, "Retrieval Average", DATA_OVERALL[TASK_LIST_RETRIEVAL].mean(axis=1, skipna=False))
|
| 200 |
+
DATA_OVERALL.insert(7, "STS Average", DATA_OVERALL[TASK_LIST_STS].mean(axis=1, skipna=False))
|
| 201 |
+
DATA_OVERALL.insert(8, "Summarization Average", DATA_OVERALL[TASK_LIST_SUMMARIZATION].mean(axis=1, skipna=False))
|
| 202 |
+
DATA_OVERALL = DATA_OVERALL.round(2).astype(str)
|
| 203 |
+
|
| 204 |
+
DATA_CLASSIFICATION_EN = DATA_OVERALL[["Model"] + TASK_LIST_CLASSIFICATION]
|
| 205 |
+
DATA_CLUSTERING = DATA_OVERALL[["Model"] + TASK_LIST_CLUSTERING]
|
| 206 |
+
DATA_PAIR_CLASSIFICATION = DATA_OVERALL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION]
|
| 207 |
+
DATA_RERANKING = DATA_OVERALL[["Model"] + TASK_LIST_RERANKING]
|
| 208 |
+
DATA_RETRIEVAL = DATA_OVERALL[["Model"] + TASK_LIST_RETRIEVAL]
|
| 209 |
+
DATA_STS_EN = DATA_OVERALL[["Model"] + TASK_LIST_STS]
|
| 210 |
+
DATA_SUMMARIZATION = DATA_OVERALL[["Model"] + TASK_LIST_SUMMARIZATION]
|
| 211 |
+
|
| 212 |
+
DATA_OVERALL = DATA_OVERALL[["Model", "Average", "Classification Average", "Clustering Average", "Pair Classification Average", "Reranking Average", "Retrieval Average", "STS Average", "Summarization Average"]]
|
| 213 |
|
|
|
|
|
|
|
| 214 |
|
| 215 |
block = gr.Blocks()
|
| 216 |
|
| 217 |
+
with block:
|
| 218 |
+
gr.Markdown(
|
| 219 |
+
"""Leaderboard for XX most popular Blocks Event Spaces. To learn more and join, see <a href="https://huggingface.co/Gradio-Blocks" target="_blank" style="text-decoration: underline">Blocks Party Event</a>"""
|
| 220 |
+
)
|
| 221 |
with gr.Tabs():
|
| 222 |
+
with gr.TabItem("Overall"):
|
| 223 |
+
with gr.Row():
|
| 224 |
+
gr.Markdown("""Average Scores""")
|
| 225 |
+
with gr.Row():
|
| 226 |
+
data_overall = gr.components.Dataframe(
|
| 227 |
+
DATA_OVERALL,
|
| 228 |
+
datatype="markdown",
|
| 229 |
+
type="pandas",
|
| 230 |
+
col_count=(len(DATA_OVERALL.columns), "fixed"),
|
| 231 |
+
wrap=True,
|
| 232 |
+
)
|
| 233 |
with gr.TabItem("Classification"):
|
| 234 |
with gr.TabItem("English"):
|
| 235 |
with gr.Row():
|
| 236 |
gr.Markdown("""Leaderboard for Classification""")
|
| 237 |
with gr.Row():
|
| 238 |
data_classification_en = gr.components.Dataframe(
|
| 239 |
+
DATA_CLASSIFICATION_EN,
|
| 240 |
+
datatype="markdown",
|
| 241 |
type="pandas",
|
| 242 |
+
col_count=(len(DATA_CLASSIFICATION_EN.columns), "fixed"),
|
| 243 |
)
|
| 244 |
with gr.Row():
|
| 245 |
data_run = gr.Button("Refresh")
|
| 246 |
task_classification_en = gr.Variable(value="Classification")
|
| 247 |
metric_classification_en = gr.Variable(value="accuracy")
|
| 248 |
lang_classification_en = gr.Variable(value=["en"])
|
| 249 |
+
data_run.click(
|
| 250 |
+
get_mteb_data,
|
| 251 |
+
inputs=[
|
| 252 |
+
task_classification_en,
|
| 253 |
+
metric_classification_en,
|
| 254 |
+
lang_classification_en,
|
| 255 |
+
],
|
| 256 |
+
outputs=data_classification_en,
|
| 257 |
+
)
|
| 258 |
with gr.TabItem("Multilingual"):
|
| 259 |
with gr.Row():
|
| 260 |
gr.Markdown("""Multilingual Classification""")
|
|
|
|
| 267 |
data_run = gr.Button("Refresh")
|
| 268 |
task_classification = gr.Variable(value="Classification")
|
| 269 |
metric_classification = gr.Variable(value="accuracy")
|
| 270 |
+
data_run.click(
|
| 271 |
+
get_mteb_data,
|
| 272 |
+
inputs=[task_classification, metric_classification],
|
| 273 |
+
outputs=data_classification,
|
| 274 |
+
)
|
| 275 |
with gr.TabItem("Clustering"):
|
| 276 |
with gr.Row():
|
| 277 |
gr.Markdown("""Leaderboard for Clustering""")
|
|
|
|
| 284 |
data_run = gr.Button("Refresh")
|
| 285 |
task_clustering = gr.Variable(value="Clustering")
|
| 286 |
metric_clustering = gr.Variable(value="v_measure")
|
| 287 |
+
data_run.click(
|
| 288 |
+
get_mteb_data,
|
| 289 |
+
inputs=[task_clustering, metric_clustering],
|
| 290 |
+
outputs=data_clustering,
|
| 291 |
+
)
|
| 292 |
with gr.TabItem("Retrieval"):
|
| 293 |
with gr.Row():
|
| 294 |
gr.Markdown("""Leaderboard for Retrieval""")
|
|
|
|
| 301 |
data_run = gr.Button("Refresh")
|
| 302 |
task_retrieval = gr.Variable(value="Retrieval")
|
| 303 |
metric_retrieval = gr.Variable(value="ndcg_at_10")
|
| 304 |
+
data_run.click(
|
| 305 |
+
get_mteb_data, inputs=[task_retrieval, metric_retrieval], outputs=data_retrieval
|
| 306 |
+
)
|
| 307 |
with gr.TabItem("Reranking"):
|
| 308 |
with gr.Row():
|
| 309 |
gr.Markdown("""Leaderboard for Reranking""")
|
|
|
|
| 311 |
data_reranking = gr.components.Dataframe(
|
| 312 |
datatype=["markdown"] * 500,
|
| 313 |
type="pandas",
|
| 314 |
+
# col_count=(12, "fixed"),
|
| 315 |
)
|
| 316 |
with gr.Row():
|
| 317 |
data_run = gr.Button("Refresh")
|
| 318 |
task_reranking = gr.Variable(value="Reranking")
|
| 319 |
metric_reranking = gr.Variable(value="map")
|
| 320 |
+
data_run.click(
|
| 321 |
+
get_mteb_data, inputs=[task_reranking, metric_reranking], outputs=data_reranking
|
| 322 |
+
)
|
| 323 |
with gr.TabItem("STS"):
|
| 324 |
with gr.TabItem("English"):
|
| 325 |
with gr.Row():
|
|
|
|
| 334 |
task_sts_en = gr.Variable(value="STS")
|
| 335 |
metric_sts_en = gr.Variable(value="cos_sim_spearman")
|
| 336 |
lang_sts_en = gr.Variable(value=["en", "en-en"])
|
| 337 |
+
data_run.click(
|
| 338 |
+
get_mteb_data,
|
| 339 |
+
inputs=[task_sts_en, metric_sts_en, lang_sts_en],
|
| 340 |
+
outputs=data_sts_en,
|
| 341 |
+
)
|
| 342 |
with gr.TabItem("Multilingual"):
|
| 343 |
with gr.Row():
|
| 344 |
gr.Markdown("""Leaderboard for STS""")
|
|
|
|
| 364 |
data_run = gr.Button("Refresh")
|
| 365 |
task_summarization = gr.Variable(value="Summarization")
|
| 366 |
metric_summarization = gr.Variable(value="cos_sim_spearman")
|
| 367 |
+
data_run.click(
|
| 368 |
+
get_mteb_data,
|
| 369 |
+
inputs=[task_summarization, metric_summarization],
|
| 370 |
+
outputs=data_summarization,
|
| 371 |
+
)
|
|
|
|
|
|
|
| 372 |
# running the function on page load in addition to when the button is clicked
|
| 373 |
+
#block.load(
|
| 374 |
+
# get_mteb_data,
|
| 375 |
+
# inputs=[task_classification_en, metric_classification_en],
|
| 376 |
+
# outputs=data_classification_en,
|
| 377 |
+
# show_progress=False,
|
| 378 |
+
#)
|
| 379 |
+
block.load(
|
| 380 |
+
get_mteb_data,
|
| 381 |
+
inputs=[task_classification, metric_classification],
|
| 382 |
+
outputs=data_classification,
|
| 383 |
+
)
|
| 384 |
block.load(get_mteb_data, inputs=[task_clustering, metric_clustering], outputs=data_clustering)
|
| 385 |
block.load(get_mteb_data, inputs=[task_retrieval, metric_retrieval], outputs=data_retrieval)
|
| 386 |
block.load(get_mteb_data, inputs=[task_reranking, metric_reranking], outputs=data_reranking)
|
| 387 |
+
block.load(get_mteb_data, inputs=[task_sts, metric_sts], outputs=data_sts)
|
| 388 |
+
block.load(
|
| 389 |
+
get_mteb_data, inputs=[task_summarization, metric_summarization], outputs=data_summarization
|
| 390 |
+
)
|
| 391 |
|
| 392 |
block.launch()
|
|
|