Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,30 +4,19 @@ import torch
|
|
| 4 |
from PIL import Image
|
| 5 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 6 |
|
| 7 |
-
# Install
|
| 8 |
-
subprocess.run(
|
| 9 |
-
"pip install flash-attn --no-build-isolation --global-option='--skip-cuda-build'",
|
| 10 |
-
shell=True
|
| 11 |
-
)
|
| 12 |
|
| 13 |
# Initialize Florence model
|
| 14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
-
florence_model = AutoModelForCausalLM.from_pretrained(
|
| 16 |
-
|
| 17 |
-
).to(device).eval()
|
| 18 |
-
florence_processor = AutoProcessor.from_pretrained(
|
| 19 |
-
"microsoft/Florence-2-base", trust_remote_code=True
|
| 20 |
-
)
|
| 21 |
|
| 22 |
-
# Define the caption generation function
|
| 23 |
def generate_caption(image):
|
| 24 |
if not isinstance(image, Image.Image):
|
| 25 |
image = Image.fromarray(image)
|
| 26 |
-
|
| 27 |
-
inputs = florence_processor(
|
| 28 |
-
text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt"
|
| 29 |
-
).to(device)
|
| 30 |
|
|
|
|
| 31 |
generated_ids = florence_model.generate(
|
| 32 |
input_ids=inputs["input_ids"],
|
| 33 |
pixel_values=inputs["pixel_values"],
|
|
@@ -46,48 +35,10 @@ def generate_caption(image):
|
|
| 46 |
print("\n\nGeneration completed!:" + prompt)
|
| 47 |
return prompt
|
| 48 |
|
| 49 |
-
# Gradio
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
writer = csv.writer(output)
|
| 57 |
-
writer.writerow(["Filename", "Title", "Keywords"])
|
| 58 |
-
|
| 59 |
-
for img, caption in zip(images, captions):
|
| 60 |
-
filename = img.name if hasattr(img, "name") else "uploaded_image"
|
| 61 |
-
title = caption[:50]
|
| 62 |
-
keywords = caption.split(" ") # Simple keyword generation (replace with a better method)
|
| 63 |
-
writer.writerow([filename, title, ", ".join(keywords)])
|
| 64 |
-
|
| 65 |
-
output.seek(0)
|
| 66 |
-
return output
|
| 67 |
-
|
| 68 |
-
with gr.Blocks() as demo:
|
| 69 |
-
with gr.Row():
|
| 70 |
-
with gr.Column():
|
| 71 |
-
input_images = gr.Image(
|
| 72 |
-
label="Upload Images", type="pil", multiple=True
|
| 73 |
-
)
|
| 74 |
-
generate_button = gr.Button("Generate Captions")
|
| 75 |
-
with gr.Column():
|
| 76 |
-
output_texts = gr.Textbox(
|
| 77 |
-
label="Generated Captions", lines=5, interactive=False
|
| 78 |
-
)
|
| 79 |
-
csv_output = gr.File(label="Download CSV")
|
| 80 |
-
|
| 81 |
-
# Define event logic
|
| 82 |
-
def process(images):
|
| 83 |
-
captions = [generate_caption(img) for img in images]
|
| 84 |
-
csv_file = save_to_csv(images, captions)
|
| 85 |
-
return captions, csv_file
|
| 86 |
-
|
| 87 |
-
generate_button.click(
|
| 88 |
-
fn=process,
|
| 89 |
-
inputs=[input_images],
|
| 90 |
-
outputs=[output_texts, csv_output]
|
| 91 |
-
)
|
| 92 |
-
|
| 93 |
-
demo.launch(debug=True)
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 6 |
|
| 7 |
+
# Install flash-attn library
|
| 8 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Initialize Florence model
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
|
| 13 |
+
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
|
|
|
| 15 |
def generate_caption(image):
|
| 16 |
if not isinstance(image, Image.Image):
|
| 17 |
image = Image.fromarray(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
|
| 20 |
generated_ids = florence_model.generate(
|
| 21 |
input_ids=inputs["input_ids"],
|
| 22 |
pixel_values=inputs["pixel_values"],
|
|
|
|
| 35 |
print("\n\nGeneration completed!:" + prompt)
|
| 36 |
return prompt
|
| 37 |
|
| 38 |
+
# Gradio interface
|
| 39 |
+
io = gr.Interface(
|
| 40 |
+
generate_caption,
|
| 41 |
+
inputs=[gr.Image(label="Input Image")],
|
| 42 |
+
outputs=[gr.Textbox(label="Output Prompt", lines=2, show_copy_button=True)]
|
| 43 |
+
)
|
| 44 |
+
io.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|