Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import torch
|
2 |
from PIL import Image
|
3 |
from RealESRGAN import RealESRGAN
|
|
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
import io
|
@@ -11,6 +12,7 @@ import time
|
|
11 |
# Set the device to CUDA if available, otherwise CPU
|
12 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
13 |
|
|
|
14 |
def load_model(scale):
|
15 |
model = RealESRGAN(device, scale=scale)
|
16 |
weights_path = f'weights/RealESRGAN_x{scale}.pth'
|
@@ -21,44 +23,33 @@ def load_model(scale):
|
|
21 |
print(f"Error loading weights for scale {scale}: {e}")
|
22 |
return model
|
23 |
|
24 |
-
# Load models for different scales
|
25 |
model2 = load_model(2)
|
26 |
model4 = load_model(4)
|
27 |
model8 = load_model(8)
|
28 |
|
|
|
|
|
|
|
|
|
29 |
def enhance_image(image, scale):
|
30 |
try:
|
31 |
-
print(f"Enhancing image with scale {scale}...")
|
32 |
-
start_time = time.time()
|
33 |
image_np = np.array(image.convert('RGB'))
|
34 |
model = model2 if scale == '2x' else model4 if scale == '4x' else model8
|
35 |
result = model.predict(image_np)
|
36 |
-
|
37 |
-
print(f"Image enhanced in {time.time() - start_time:.2f} seconds")
|
38 |
-
return enhanced_image
|
39 |
except Exception as e:
|
40 |
print(f"Error enhancing image: {e}")
|
41 |
return image
|
42 |
|
43 |
-
def
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
except Exception as e:
|
49 |
-
print(f"Error adjusting DPI: {e}")
|
50 |
-
return image
|
51 |
|
52 |
-
def
|
53 |
-
try:
|
54 |
-
resized_image = image.resize((width, height))
|
55 |
-
return resized_image
|
56 |
-
except Exception as e:
|
57 |
-
print(f"Error resizing image: {e}")
|
58 |
-
return image
|
59 |
-
|
60 |
-
def process_images(image_files, enhance, scale, adjust_dpi, dpi, resize, width, height):
|
61 |
processed_images = []
|
|
|
62 |
zip_buffer = io.BytesIO()
|
63 |
|
64 |
for image_file in image_files:
|
@@ -67,13 +58,11 @@ def process_images(image_files, enhance, scale, adjust_dpi, dpi, resize, width,
|
|
67 |
if enhance:
|
68 |
image = enhance_image(image, scale)
|
69 |
|
70 |
-
if
|
71 |
-
|
72 |
-
|
73 |
-
if resize:
|
74 |
-
image = resize_image(image, width, height)
|
75 |
|
76 |
-
# Save image to
|
77 |
buffer = io.BytesIO()
|
78 |
image.save(buffer, format='JPEG')
|
79 |
processed_images.append(Image.open(io.BytesIO(buffer.getvalue())))
|
@@ -81,26 +70,23 @@ def process_images(image_files, enhance, scale, adjust_dpi, dpi, resize, width,
|
|
81 |
zipf.writestr(os.path.basename(image_file.name), buffer.getvalue())
|
82 |
|
83 |
zip_buffer.seek(0)
|
84 |
-
return processed_images, zip_buffer
|
85 |
|
86 |
iface = gr.Interface(
|
87 |
fn=process_images,
|
88 |
inputs=[
|
89 |
-
gr.Files(label="Upload Image Files"),
|
90 |
gr.Checkbox(label="Enhance Images (ESRGAN)"),
|
91 |
gr.Radio(['2x', '4x', '8x'], type="value", value='2x', label='Resolution model'),
|
92 |
-
gr.Checkbox(label="
|
93 |
-
gr.Number(label="DPI", value=300),
|
94 |
-
gr.Checkbox(label="Resize"),
|
95 |
-
gr.Number(label="Width", value=512),
|
96 |
-
gr.Number(label="Height", value=512)
|
97 |
],
|
98 |
outputs=[
|
99 |
-
gr.Gallery(label="
|
100 |
-
gr.File(label="Download
|
|
|
101 |
],
|
102 |
-
title="
|
103 |
-
description="Upload multiple images
|
104 |
)
|
105 |
|
106 |
-
iface.launch(
|
|
|
1 |
import torch
|
2 |
from PIL import Image
|
3 |
from RealESRGAN import RealESRGAN
|
4 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration # Example for Hugging Face model
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import io
|
|
|
12 |
# Set the device to CUDA if available, otherwise CPU
|
13 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
14 |
|
15 |
+
# Load the RealESRGAN models for enhancement
|
16 |
def load_model(scale):
|
17 |
model = RealESRGAN(device, scale=scale)
|
18 |
weights_path = f'weights/RealESRGAN_x{scale}.pth'
|
|
|
23 |
print(f"Error loading weights for scale {scale}: {e}")
|
24 |
return model
|
25 |
|
|
|
26 |
model2 = load_model(2)
|
27 |
model4 = load_model(4)
|
28 |
model8 = load_model(8)
|
29 |
|
30 |
+
# Load Hugging Face model and processor for image description
|
31 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
32 |
+
caption_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device)
|
33 |
+
|
34 |
def enhance_image(image, scale):
|
35 |
try:
|
|
|
|
|
36 |
image_np = np.array(image.convert('RGB'))
|
37 |
model = model2 if scale == '2x' else model4 if scale == '4x' else model8
|
38 |
result = model.predict(image_np)
|
39 |
+
return Image.fromarray(np.uint8(result))
|
|
|
|
|
40 |
except Exception as e:
|
41 |
print(f"Error enhancing image: {e}")
|
42 |
return image
|
43 |
|
44 |
+
def describe_image(image):
|
45 |
+
inputs = processor(image, return_tensors="pt").to(device)
|
46 |
+
generated_ids = caption_model.generate(**inputs)
|
47 |
+
description = processor.decode(generated_ids[0], skip_special_tokens=True)
|
48 |
+
return description
|
|
|
|
|
|
|
49 |
|
50 |
+
def process_images(image_files, enhance, scale, generate_description):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
processed_images = []
|
52 |
+
descriptions = []
|
53 |
zip_buffer = io.BytesIO()
|
54 |
|
55 |
for image_file in image_files:
|
|
|
58 |
if enhance:
|
59 |
image = enhance_image(image, scale)
|
60 |
|
61 |
+
if generate_description:
|
62 |
+
description = describe_image(image)
|
63 |
+
descriptions.append(description)
|
|
|
|
|
64 |
|
65 |
+
# Save enhanced image to ZIP in-memory buffer
|
66 |
buffer = io.BytesIO()
|
67 |
image.save(buffer, format='JPEG')
|
68 |
processed_images.append(Image.open(io.BytesIO(buffer.getvalue())))
|
|
|
70 |
zipf.writestr(os.path.basename(image_file.name), buffer.getvalue())
|
71 |
|
72 |
zip_buffer.seek(0)
|
73 |
+
return processed_images, zip_buffer, descriptions
|
74 |
|
75 |
iface = gr.Interface(
|
76 |
fn=process_images,
|
77 |
inputs=[
|
78 |
+
gr.Files(label="Upload Image Files"),
|
79 |
gr.Checkbox(label="Enhance Images (ESRGAN)"),
|
80 |
gr.Radio(['2x', '4x', '8x'], type="value", value='2x', label='Resolution model'),
|
81 |
+
gr.Checkbox(label="Generate Image Descriptions")
|
|
|
|
|
|
|
|
|
82 |
],
|
83 |
outputs=[
|
84 |
+
gr.Gallery(label="Enhanced Images"),
|
85 |
+
gr.File(label="Download Enhanced Images (ZIP)"),
|
86 |
+
gr.Textbox(label="Generated Descriptions", lines=5)
|
87 |
],
|
88 |
+
title="Image Enhancer with Description Generator",
|
89 |
+
description="Upload multiple images, enhance using AI, generate descriptions using Hugging Face, and download results as a ZIP file."
|
90 |
)
|
91 |
|
92 |
+
iface.launch()
|