Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,14 @@
|
|
1 |
import torch
|
2 |
from PIL import Image
|
3 |
from RealESRGAN import RealESRGAN
|
4 |
-
from transformers import BlipProcessor, BlipForConditionalGeneration # Example for Hugging Face model
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
-
import
|
8 |
-
import zipfile
|
9 |
-
import os
|
10 |
import time
|
|
|
11 |
|
12 |
-
# Set the device to CUDA if available, otherwise CPU
|
13 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
14 |
|
15 |
-
# Load the RealESRGAN models for enhancement
|
16 |
def load_model(scale):
|
17 |
model = RealESRGAN(device, scale=scale)
|
18 |
weights_path = f'weights/RealESRGAN_x{scale}.pth'
|
@@ -21,72 +17,101 @@ def load_model(scale):
|
|
21 |
print(f"Weights for scale {scale} loaded successfully.")
|
22 |
except Exception as e:
|
23 |
print(f"Error loading weights for scale {scale}: {e}")
|
|
|
24 |
return model
|
25 |
|
26 |
model2 = load_model(2)
|
27 |
model4 = load_model(4)
|
28 |
model8 = load_model(8)
|
29 |
|
30 |
-
# Load Hugging Face model and processor for image description
|
31 |
-
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
32 |
-
caption_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device)
|
33 |
-
|
34 |
def enhance_image(image, scale):
|
35 |
try:
|
|
|
|
|
36 |
image_np = np.array(image.convert('RGB'))
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
except Exception as e:
|
41 |
print(f"Error enhancing image: {e}")
|
42 |
return image
|
43 |
|
44 |
-
def
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
49 |
|
50 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
processed_images = []
|
52 |
-
|
53 |
-
zip_buffer = io.BytesIO()
|
54 |
|
55 |
for image_file in image_files:
|
56 |
-
|
|
|
57 |
|
58 |
if enhance:
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
image.save(buffer, format='JPEG')
|
68 |
-
processed_images.append(Image.open(io.BytesIO(buffer.getvalue())))
|
69 |
-
with zipfile.ZipFile(zip_buffer, 'a') as zipf:
|
70 |
-
zipf.writestr(os.path.basename(image_file.name), buffer.getvalue())
|
71 |
|
72 |
-
|
73 |
-
return processed_images, zip_buffer, descriptions
|
74 |
|
75 |
iface = gr.Interface(
|
76 |
fn=process_images,
|
77 |
inputs=[
|
78 |
-
gr.Files(label="Upload Image Files"),
|
79 |
gr.Checkbox(label="Enhance Images (ESRGAN)"),
|
80 |
gr.Radio(['2x', '4x', '8x'], type="value", value='2x', label='Resolution model'),
|
81 |
-
gr.Checkbox(label="
|
|
|
|
|
|
|
|
|
82 |
],
|
83 |
outputs=[
|
84 |
-
gr.Gallery(label="
|
85 |
-
gr.
|
86 |
-
gr.Textbox(label="Generated Descriptions", lines=5)
|
87 |
],
|
88 |
-
title="Image Enhancer
|
89 |
-
description="Upload multiple images, enhance using AI,
|
90 |
)
|
91 |
|
92 |
-
iface.launch()
|
|
|
1 |
import torch
|
2 |
from PIL import Image
|
3 |
from RealESRGAN import RealESRGAN
|
|
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
+
import tempfile
|
|
|
|
|
7 |
import time
|
8 |
+
import os
|
9 |
|
|
|
10 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
|
|
|
12 |
def load_model(scale):
|
13 |
model = RealESRGAN(device, scale=scale)
|
14 |
weights_path = f'weights/RealESRGAN_x{scale}.pth'
|
|
|
17 |
print(f"Weights for scale {scale} loaded successfully.")
|
18 |
except Exception as e:
|
19 |
print(f"Error loading weights for scale {scale}: {e}")
|
20 |
+
model.load_weights(weights_path, download=False)
|
21 |
return model
|
22 |
|
23 |
model2 = load_model(2)
|
24 |
model4 = load_model(4)
|
25 |
model8 = load_model(8)
|
26 |
|
|
|
|
|
|
|
|
|
27 |
def enhance_image(image, scale):
|
28 |
try:
|
29 |
+
print(f"Enhancing image with scale {scale}...")
|
30 |
+
start_time = time.time()
|
31 |
image_np = np.array(image.convert('RGB'))
|
32 |
+
print(f"Image converted to numpy array: shape {image_np.shape}, dtype {image_np.dtype}")
|
33 |
+
|
34 |
+
if scale == '2x':
|
35 |
+
result = model2.predict(image_np)
|
36 |
+
elif scale == '4x':
|
37 |
+
result = model4.predict(image_np)
|
38 |
+
else:
|
39 |
+
result = model8.predict(image_np)
|
40 |
+
|
41 |
+
enhanced_image = Image.fromarray(np.uint8(result))
|
42 |
+
print(f"Image enhanced in {time.time() - start_time:.2f} seconds")
|
43 |
+
return enhanced_image
|
44 |
except Exception as e:
|
45 |
print(f"Error enhancing image: {e}")
|
46 |
return image
|
47 |
|
48 |
+
def muda_dpi(input_image, dpi):
|
49 |
+
dpi_tuple = (dpi, dpi)
|
50 |
+
image = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
51 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
|
52 |
+
image.save(temp_file, format='JPEG', dpi=dpi_tuple)
|
53 |
+
temp_file.close()
|
54 |
+
return Image.open(temp_file.name)
|
55 |
|
56 |
+
def resize_image(input_image, width, height):
|
57 |
+
image = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
58 |
+
resized_image = image.resize((width, height))
|
59 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
|
60 |
+
resized_image.save(temp_file, format='JPEG')
|
61 |
+
temp_file.close()
|
62 |
+
return Image.open(temp_file.name)
|
63 |
+
|
64 |
+
def process_images(image_files, enhance, scale, adjust_dpi, dpi, resize, width, height):
|
65 |
processed_images = []
|
66 |
+
file_paths = []
|
|
|
67 |
|
68 |
for image_file in image_files:
|
69 |
+
input_image = np.array(Image.open(image_file).convert('RGB'))
|
70 |
+
original_image = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
71 |
|
72 |
if enhance:
|
73 |
+
original_image = enhance_image(original_image, scale)
|
74 |
+
|
75 |
+
if adjust_dpi:
|
76 |
+
original_image = muda_dpi(np.array(original_image), dpi)
|
77 |
+
|
78 |
+
if resize:
|
79 |
+
original_image = resize_image(np.array(original_image), width, height)
|
80 |
+
|
81 |
+
# Sanitize the base filename
|
82 |
+
base_name = os.path.basename(image_file.name)
|
83 |
+
file_name, _ = os.path.splitext(base_name)
|
84 |
+
|
85 |
+
# Remove any characters that aren't alphanumeric, spaces, underscores, or hyphens
|
86 |
+
file_name = ''.join(e for e in file_name if e.isalnum() or e in (' ', '_', '-')).strip().replace(' ', '_')
|
87 |
|
88 |
+
# Create a final file path without unnecessary suffixes
|
89 |
+
output_path = os.path.join(tempfile.gettempdir(), f"{file_name}.jpg")
|
90 |
+
original_image.save(output_path, format='JPEG')
|
91 |
|
92 |
+
processed_images.append(original_image)
|
93 |
+
file_paths.append(output_path)
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
return processed_images, file_paths
|
|
|
96 |
|
97 |
iface = gr.Interface(
|
98 |
fn=process_images,
|
99 |
inputs=[
|
100 |
+
gr.Files(label="Upload Image Files"), # Use gr.Files for multiple file uploads
|
101 |
gr.Checkbox(label="Enhance Images (ESRGAN)"),
|
102 |
gr.Radio(['2x', '4x', '8x'], type="value", value='2x', label='Resolution model'),
|
103 |
+
gr.Checkbox(label="Adjust DPI"),
|
104 |
+
gr.Number(label="DPI", value=300),
|
105 |
+
gr.Checkbox(label="Resize"),
|
106 |
+
gr.Number(label="Width", value=512),
|
107 |
+
gr.Number(label="Height", value=512)
|
108 |
],
|
109 |
outputs=[
|
110 |
+
gr.Gallery(label="Final Images"), # Use gr.Gallery to display multiple images
|
111 |
+
gr.Files(label="Download Final Images")
|
|
|
112 |
],
|
113 |
+
title="Multi-Image Enhancer",
|
114 |
+
description="Upload multiple images (.jpg, .png), enhance using AI, adjust DPI, resize, and download the final results."
|
115 |
)
|
116 |
|
117 |
+
iface.launch(debug=True)
|