Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
from RealESRGAN import RealESRGAN
|
@@ -8,7 +6,9 @@ import numpy as np
|
|
8 |
import tempfile
|
9 |
import time
|
10 |
import os
|
11 |
-
from transformers import pipeline
|
|
|
|
|
12 |
|
13 |
# Check for GPU availability
|
14 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
@@ -36,11 +36,7 @@ description_generator = pipeline("image-to-text", model="nlpconnect/vit-gpt2-ima
|
|
36 |
# Enhance image based on selected scale
|
37 |
def enhance_image(image, scale):
|
38 |
try:
|
39 |
-
print(f"Enhancing image with scale {scale}...")
|
40 |
-
start_time = time.time()
|
41 |
image_np = np.array(image.convert('RGB'))
|
42 |
-
print(f"Image converted to numpy array: shape {image_np.shape}, dtype {image_np.dtype}")
|
43 |
-
|
44 |
if scale == '2x':
|
45 |
result = model2.predict(image_np)
|
46 |
elif scale == '4x':
|
@@ -48,25 +44,21 @@ def enhance_image(image, scale):
|
|
48 |
else:
|
49 |
result = model8.predict(image_np)
|
50 |
|
51 |
-
|
52 |
-
print(f"Image enhanced in {time.time() - start_time:.2f} seconds")
|
53 |
-
return enhanced_image
|
54 |
except Exception as e:
|
55 |
print(f"Error enhancing image: {e}")
|
56 |
return image
|
57 |
|
58 |
-
# Generate image description
|
59 |
def generate_description(image):
|
60 |
try:
|
61 |
-
print("Generating description for the image...")
|
62 |
description = description_generator(image)[0]['generated_text']
|
63 |
-
print(f"Description generated: {description}")
|
64 |
return description
|
65 |
except Exception as e:
|
66 |
print(f"Error generating description: {e}")
|
67 |
return "Description unavailable."
|
68 |
|
69 |
-
# Adjust DPI
|
70 |
def muda_dpi(input_image, dpi):
|
71 |
dpi_tuple = (dpi, dpi)
|
72 |
image = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
@@ -75,7 +67,7 @@ def muda_dpi(input_image, dpi):
|
|
75 |
temp_file.close()
|
76 |
return Image.open(temp_file.name)
|
77 |
|
78 |
-
# Resize an image
|
79 |
def resize_image(input_image, width, height):
|
80 |
image = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
81 |
resized_image = image.resize((width, height))
|
@@ -84,50 +76,67 @@ def resize_image(input_image, width, height):
|
|
84 |
temp_file.close()
|
85 |
return Image.open(temp_file.name)
|
86 |
|
87 |
-
# Process a
|
88 |
def process_images(image_files, enhance, scale, adjust_dpi, dpi, resize, width, height):
|
89 |
processed_images = []
|
90 |
file_paths = []
|
91 |
-
descriptions = []
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
original_image =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
#
|
127 |
iface = gr.Interface(
|
128 |
fn=process_images,
|
129 |
inputs=[
|
130 |
-
gr.Files(label="Upload Image Files"),
|
131 |
gr.Checkbox(label="Enhance Images (ESRGAN)"),
|
132 |
gr.Radio(['2x', '4x', '8x'], type="value", value='2x', label='Resolution model'),
|
133 |
gr.Checkbox(label="Adjust DPI"),
|
@@ -137,12 +146,12 @@ iface = gr.Interface(
|
|
137 |
gr.Number(label="Height", value=512)
|
138 |
],
|
139 |
outputs=[
|
140 |
-
gr.Gallery(label="Final Images"),
|
141 |
-
gr.
|
142 |
-
gr.Textbox(label="Image Descriptions", lines=5)
|
143 |
],
|
144 |
title="Multi-Image Enhancer with Hugging Face Descriptions",
|
145 |
-
description="Upload multiple images
|
146 |
)
|
147 |
|
148 |
iface.launch(debug=True, share=True)
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from PIL import Image
|
3 |
from RealESRGAN import RealESRGAN
|
|
|
6 |
import tempfile
|
7 |
import time
|
8 |
import os
|
9 |
+
from transformers import pipeline
|
10 |
+
import csv
|
11 |
+
import zipfile
|
12 |
|
13 |
# Check for GPU availability
|
14 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
36 |
# Enhance image based on selected scale
|
37 |
def enhance_image(image, scale):
|
38 |
try:
|
|
|
|
|
39 |
image_np = np.array(image.convert('RGB'))
|
|
|
|
|
40 |
if scale == '2x':
|
41 |
result = model2.predict(image_np)
|
42 |
elif scale == '4x':
|
|
|
44 |
else:
|
45 |
result = model8.predict(image_np)
|
46 |
|
47 |
+
return Image.fromarray(np.uint8(result))
|
|
|
|
|
48 |
except Exception as e:
|
49 |
print(f"Error enhancing image: {e}")
|
50 |
return image
|
51 |
|
52 |
+
# Generate image description
|
53 |
def generate_description(image):
|
54 |
try:
|
|
|
55 |
description = description_generator(image)[0]['generated_text']
|
|
|
56 |
return description
|
57 |
except Exception as e:
|
58 |
print(f"Error generating description: {e}")
|
59 |
return "Description unavailable."
|
60 |
|
61 |
+
# Adjust DPI
|
62 |
def muda_dpi(input_image, dpi):
|
63 |
dpi_tuple = (dpi, dpi)
|
64 |
image = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
|
|
67 |
temp_file.close()
|
68 |
return Image.open(temp_file.name)
|
69 |
|
70 |
+
# Resize an image
|
71 |
def resize_image(input_image, width, height):
|
72 |
image = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
73 |
resized_image = image.resize((width, height))
|
|
|
76 |
temp_file.close()
|
77 |
return Image.open(temp_file.name)
|
78 |
|
79 |
+
# Process images and generate a ZIP file with images and CSV
|
80 |
def process_images(image_files, enhance, scale, adjust_dpi, dpi, resize, width, height):
|
81 |
processed_images = []
|
82 |
file_paths = []
|
83 |
+
descriptions = []
|
84 |
+
|
85 |
+
# Temporary CSV file path
|
86 |
+
csv_file_path = os.path.join(tempfile.gettempdir(), "image_descriptions.csv")
|
87 |
+
with open(csv_file_path, mode="w", newline="") as csv_file:
|
88 |
+
writer = csv.writer(csv_file)
|
89 |
+
writer.writerow(["Filename", "Title", "Keywords"])
|
90 |
+
|
91 |
+
for image_file in image_files:
|
92 |
+
input_image = np.array(Image.open(image_file).convert('RGB'))
|
93 |
+
original_image = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
94 |
+
|
95 |
+
if enhance:
|
96 |
+
original_image = enhance_image(original_image, scale)
|
97 |
+
|
98 |
+
if adjust_dpi:
|
99 |
+
original_image = muda_dpi(np.array(original_image), dpi)
|
100 |
+
|
101 |
+
if resize:
|
102 |
+
original_image = resize_image(np.array(original_image), width, height)
|
103 |
|
104 |
+
# Generate description
|
105 |
+
description = generate_description(original_image)
|
106 |
+
title = description # Using description as the title
|
107 |
+
keywords = ", ".join(set(description.split()))[:45] # Limit to 45 unique words
|
108 |
+
|
109 |
+
# Clean the filename
|
110 |
+
base_name = os.path.basename(image_file.name)
|
111 |
+
file_name, _ = os.path.splitext(base_name)
|
112 |
+
file_name = ''.join(e for e in file_name if e.isalnum() or e in (' ', '_', '-')).strip().replace(' ', '_')
|
113 |
+
|
114 |
+
# Final image path
|
115 |
+
output_path = os.path.join(tempfile.gettempdir(), f"{file_name}.jpg")
|
116 |
+
original_image.save(output_path, format='JPEG')
|
117 |
+
|
118 |
+
# Write to CSV
|
119 |
+
writer.writerow([file_name, title, keywords])
|
120 |
+
|
121 |
+
# Collect image paths and descriptions
|
122 |
+
processed_images.append(original_image)
|
123 |
+
file_paths.append(output_path)
|
124 |
+
descriptions.append(description)
|
125 |
+
|
126 |
+
# Create a ZIP file with all images and CSV
|
127 |
+
zip_file_path = os.path.join(tempfile.gettempdir(), "processed_images.zip")
|
128 |
+
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
|
129 |
+
for file_path in file_paths:
|
130 |
+
zipf.write(file_path, arcname=os.path.basename(file_path))
|
131 |
+
zipf.write(csv_file_path, arcname="image_descriptions.csv")
|
132 |
+
|
133 |
+
return processed_images, zip_file_path, descriptions
|
134 |
|
135 |
+
# Gradio interface
|
136 |
iface = gr.Interface(
|
137 |
fn=process_images,
|
138 |
inputs=[
|
139 |
+
gr.Files(label="Upload Image Files"),
|
140 |
gr.Checkbox(label="Enhance Images (ESRGAN)"),
|
141 |
gr.Radio(['2x', '4x', '8x'], type="value", value='2x', label='Resolution model'),
|
142 |
gr.Checkbox(label="Adjust DPI"),
|
|
|
146 |
gr.Number(label="Height", value=512)
|
147 |
],
|
148 |
outputs=[
|
149 |
+
gr.Gallery(label="Final Images"),
|
150 |
+
gr.File(label="Download ZIP of Images and Descriptions"),
|
151 |
+
gr.Textbox(label="Image Descriptions", lines=5)
|
152 |
],
|
153 |
title="Multi-Image Enhancer with Hugging Face Descriptions",
|
154 |
+
description="Upload multiple images, enhance, adjust DPI, resize, generate descriptions, and download the results and a ZIP archive."
|
155 |
)
|
156 |
|
157 |
iface.launch(debug=True, share=True)
|