Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
from tensorflow.keras.preprocessing import image
|
6 |
+
from tensorflow.keras.applications.vgg16 import preprocess_input
|
7 |
+
|
8 |
+
# Load your trained model
|
9 |
+
model = load_model('/Users/abhinavyadav/Downloads/BT(Deploy).h5') # Replace with your model's path
|
10 |
+
|
11 |
+
# Set Streamlit page config for a better layout
|
12 |
+
st.set_page_config(page_title="Brain Tumor Detection", page_icon="🧠", layout="centered")
|
13 |
+
|
14 |
+
# Add a title and description
|
15 |
+
st.title("Brain Tumor Detection 🧠")
|
16 |
+
st.markdown("""
|
17 |
+
Upload a brain MRI scan to detect whether it contains a brain tumor or not.
|
18 |
+
Our model uses advanced deep learning to analyze your scan and provide a prediction.
|
19 |
+
""")
|
20 |
+
|
21 |
+
# File uploader with custom styling
|
22 |
+
uploaded_file = st.file_uploader("Upload a Brain MRI Scan", type=["jpg", "png", "jpeg"], label_visibility="collapsed")
|
23 |
+
|
24 |
+
|
25 |
+
# Function to preprocess the image
|
26 |
+
def preprocess_image(img):
|
27 |
+
img = img.resize((224, 224)) # Resize to 224x224
|
28 |
+
img_array = np.array(img) # Convert image to numpy array
|
29 |
+
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
30 |
+
img_array = preprocess_input(img_array) # Preprocess image for VGG16
|
31 |
+
return img_array
|
32 |
+
|
33 |
+
|
34 |
+
if uploaded_file is not None:
|
35 |
+
# Display the uploaded image
|
36 |
+
img = Image.open(uploaded_file)
|
37 |
+
st.image(img, caption="Uploaded MRI Scan", use_column_width=True)
|
38 |
+
|
39 |
+
# Preprocess and predict
|
40 |
+
try:
|
41 |
+
processed_image = preprocess_image(img)
|
42 |
+
st.write("Image successfully preprocessed!")
|
43 |
+
|
44 |
+
# Model prediction
|
45 |
+
prediction = model.predict(processed_image)
|
46 |
+
|
47 |
+
# Display prediction result with styling
|
48 |
+
st.subheader("Prediction Results")
|
49 |
+
if prediction[0][0] > 0.5:
|
50 |
+
st.markdown('<p style="font-size:18px;color:red;">⚠️ Brain Tumor Detected</p>', unsafe_allow_html=True)
|
51 |
+
else:
|
52 |
+
st.markdown('<p style="font-size:18px;color:green;">✅ No Brain Tumor Detected</p>', unsafe_allow_html=True)
|
53 |
+
|
54 |
+
except Exception as e:
|
55 |
+
st.error(f"Error in preprocessing or prediction: {e}")
|
56 |
+
|
57 |
+
# Add footer and additional information
|
58 |
+
st.markdown("""
|
59 |
+
---
|
60 |
+
**Developed with 💙 by [Abhinav]**
|
61 |
+
This project is aimed at helping doctors detect brain tumors from MRI scans using deep learning models.
|
62 |
+
""")
|
63 |
+
|
64 |
+
# Custom styling for Streamlit components
|
65 |
+
st.markdown("""
|
66 |
+
<style>
|
67 |
+
.css-1v0mbdj {
|
68 |
+
font-size: 20px;
|
69 |
+
font-weight: bold;
|
70 |
+
}
|
71 |
+
.css-5wyi5j {
|
72 |
+
background-color: #f0f0f5;
|
73 |
+
}
|
74 |
+
</style>
|
75 |
+
""", unsafe_allow_html=True)
|