Upload 2 files
Browse files- app.txt +129 -0
- requirements.txt +4 -0
app.txt
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import joblib
|
| 3 |
+
import pandas as pd
|
| 4 |
+
|
| 5 |
+
# Load the model
|
| 6 |
+
model = joblib.load('accident_prediction_model_Final.m5')
|
| 7 |
+
|
| 8 |
+
# Load the encoder
|
| 9 |
+
encoder = joblib.load('encoder.pkl')
|
| 10 |
+
|
| 11 |
+
# Define classes for accident prediction
|
| 12 |
+
classes = ["No", "Yes"]
|
| 13 |
+
|
| 14 |
+
# Create the inputs list with dropdown menus and sliders
|
| 15 |
+
inputs = [
|
| 16 |
+
gr.Dropdown(
|
| 17 |
+
choices=['Sunny/Clear', 'Rainy', 'Hail/Sleet', 'Foggy/Misty', 'Others'],
|
| 18 |
+
label="Weather Conditions"
|
| 19 |
+
),
|
| 20 |
+
gr.Dropdown(
|
| 21 |
+
choices=['Pedestrian', 'Bicycles', 'Two Wheelers', 'Auto Rickshaws', 'Cars, Taxis, Vans & LMV', 'Trucks, Lorries', 'Buses', 'Non-motorized Vehicles', 'Others'],
|
| 22 |
+
label="Impact Type"
|
| 23 |
+
),
|
| 24 |
+
gr.Dropdown(
|
| 25 |
+
choices=['Speeding', 'Jumping Red Light', 'Distracted Driving', 'Drunk Driving', 'Other'],
|
| 26 |
+
label="Traffic Violations"
|
| 27 |
+
),
|
| 28 |
+
gr.Dropdown(
|
| 29 |
+
choices=['Straight Road', 'Curved Road', 'Bridge', 'Culvert', 'Pot Holes', 'Steep Grade', 'Ongoing Road Works/Under Construction', 'Others'],
|
| 30 |
+
label="Road Features"
|
| 31 |
+
),
|
| 32 |
+
gr.Dropdown(
|
| 33 |
+
choices=['T-Junction', 'Y-Junction', 'Four arm Junction', 'Staggered Junction', 'Round about Junction', 'Others'],
|
| 34 |
+
label="Junction Types"
|
| 35 |
+
),
|
| 36 |
+
gr.Dropdown(
|
| 37 |
+
choices=['Traffic Light Signal', 'Police Controlled', 'Stop Sign', 'Flashing Signal/Blinker', 'Uncontrolled', 'Others'],
|
| 38 |
+
label="Traffic Controls"
|
| 39 |
+
),
|
| 40 |
+
gr.Dropdown(
|
| 41 |
+
choices=['morning', 'afternoon', 'evening', 'night'],
|
| 42 |
+
label="Time of Day"
|
| 43 |
+
),
|
| 44 |
+
gr.Dropdown(
|
| 45 |
+
choices=['13-17', '18-25', '26-40', '41-60', '60-80', '80 above'],
|
| 46 |
+
label="Age Group"
|
| 47 |
+
),
|
| 48 |
+
gr.Dropdown(
|
| 49 |
+
choices=['Killed', 'Grievously Injured', 'Minor Injury'],
|
| 50 |
+
label="Injury Type"
|
| 51 |
+
),
|
| 52 |
+
gr.Dropdown(
|
| 53 |
+
choices=['Yes', 'No'],
|
| 54 |
+
label="Safety Features"
|
| 55 |
+
),
|
| 56 |
+
gr.Slider(minimum=-90, maximum=90, label="Latitude"),
|
| 57 |
+
gr.Slider(minimum=-180, maximum=180, label="Longitude"),
|
| 58 |
+
gr.Slider(minimum=1, maximum=10, step= 1, label="Person Count"),
|
| 59 |
+
]
|
| 60 |
+
|
| 61 |
+
# Define output label
|
| 62 |
+
output_label = gr.Label(num_top_classes=4)
|
| 63 |
+
|
| 64 |
+
# Create a function to make predictions
|
| 65 |
+
def predict_accident(
|
| 66 |
+
weather_conditions,
|
| 67 |
+
impact_type,
|
| 68 |
+
traffic_violations,
|
| 69 |
+
road_features,
|
| 70 |
+
junction_types,
|
| 71 |
+
traffic_controls,
|
| 72 |
+
time_day,
|
| 73 |
+
age_group,
|
| 74 |
+
injury,
|
| 75 |
+
safety_features,
|
| 76 |
+
Latitude,
|
| 77 |
+
Longitude,
|
| 78 |
+
person_count
|
| 79 |
+
):
|
| 80 |
+
data = {
|
| 81 |
+
'selectedWeatherCondition': weather_conditions,
|
| 82 |
+
'selectedImpactType': impact_type,
|
| 83 |
+
'selectedTrafficViolationType': traffic_violations,
|
| 84 |
+
'selectedRoadFeaturesType': road_features,
|
| 85 |
+
'selectedRoadJunctionType': junction_types,
|
| 86 |
+
'selectedTrafficControl': traffic_controls,
|
| 87 |
+
'selectedTimeOfDay': time_day,
|
| 88 |
+
'selectedAge': age_group,
|
| 89 |
+
'selectedInjuryType': injury,
|
| 90 |
+
'selectedSafetyFeature': safety_features,
|
| 91 |
+
'Latitude': Latitude,
|
| 92 |
+
'Longitude': Longitude,
|
| 93 |
+
'personCount': person_count
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
num_input = {'Latitude': data['Latitude'], 'Longitude': data['Longitude'], 'person_count': data['personCount']}
|
| 97 |
+
cat_input = {'weather_conditions': data['selectedWeatherCondition'], 'impact_type': data['selectedImpactType'],
|
| 98 |
+
'traffic_voilations': data['selectedTrafficViolationType'],
|
| 99 |
+
'road_features': data['selectedRoadFeaturesType'],
|
| 100 |
+
'junction_types': data['selectedRoadJunctionType'],
|
| 101 |
+
'traffic_controls': data['selectedTrafficControl'], 'time_day': data['selectedTimeOfDay'],
|
| 102 |
+
'age_group': data['selectedAge'], 'safety_features': data['selectedSafetyFeature'],
|
| 103 |
+
'injury': data['selectedInjuryType']}
|
| 104 |
+
|
| 105 |
+
input_df = pd.DataFrame([cat_input])
|
| 106 |
+
|
| 107 |
+
encoded_input = encoder['encoder'].transform(input_df)
|
| 108 |
+
encoded_input_df = pd.DataFrame(encoded_input, columns=encoder['encoded_columns'])
|
| 109 |
+
|
| 110 |
+
num_df = pd.DataFrame([num_input])
|
| 111 |
+
input_with_coords = pd.concat([num_df, encoded_input_df], axis=1)
|
| 112 |
+
|
| 113 |
+
# Make a prediction using the trained model
|
| 114 |
+
prediction = model.predict(input_with_coords)
|
| 115 |
+
|
| 116 |
+
label = f"Accident Prediction: {classes[int(prediction[0])]}"
|
| 117 |
+
return label
|
| 118 |
+
|
| 119 |
+
# Create the Gradio interface
|
| 120 |
+
title = "Accident Prediction"
|
| 121 |
+
description = "Predict the severity of an accident based on input features."
|
| 122 |
+
output_label = [gr.Label(num_top_classes=4)]
|
| 123 |
+
gr.Interface(
|
| 124 |
+
fn=predict_accident,
|
| 125 |
+
inputs=inputs,
|
| 126 |
+
outputs=output_label,
|
| 127 |
+
title=title,
|
| 128 |
+
description=description,
|
| 129 |
+
).launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
pandas
|
| 3 |
+
joblib
|
| 4 |
+
scikit-learn
|