Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
| # Load the tokenizer and model from the Hugging Face Model Hub | |
| model_path = 'abdulllah01/mt5-Summarizer-FineTuned' | |
| tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| model = AutoModelForSeq2SeqLM.from_pretrained(model_path) | |
| # Streamlit app | |
| st.title("Summarization App") | |
| st.write("This app summarizes text using a fine-tuned T5 model.") | |
| # User input | |
| user_input = st.text_area("Enter text to summarize", "") | |
| if st.button("Summarize"): | |
| if user_input: | |
| inputs = tokenizer.encode("summarize: " + user_input, return_tensors="pt", max_length=512, truncation=True) | |
| summary_ids = model.generate(inputs, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True) | |
| summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
| st.write("Summary:") | |
| st.write(summary) | |
| else: | |
| st.write("Please enter some text to summarize") |