Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Load the tokenizer and model from the Hugging Face Model Hub | |
model_path = 'abdulllah01/mt5-Summarizer-FineTuned' | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_path) | |
# Streamlit app | |
st.title("Summarization App") | |
st.write("This app summarizes text using a fine-tuned T5 model.") | |
# User input | |
user_input = st.text_area("Enter text to summarize", "") | |
if st.button("Summarize"): | |
if user_input: | |
inputs = tokenizer.encode("summarize: " + user_input, return_tensors="pt", max_length=512, truncation=True) | |
summary_ids = model.generate(inputs, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
st.write("Summary:") | |
st.write(summary) | |
else: | |
st.write("Please enter some text to summarize.") |