import streamlit as st from transformers import GPT2LMHeadModel, GPT2Tokenizer # Load the model and tokenizer model_name = "gpt2" tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) # Function to create the prompt def make_prompt(new_title): prompt = f""" Write a Blog Post On the given Title like the example: Title: The Benefits of Daily Meditation Blog Content: Meditation is a practice where an individual uses a technique – such as mindfulness, or focusing the mind on a particular object, thought, or activity – to train attention and awareness, and achieve a mentally clear and emotionally calm and stable state. Daily meditation can bring numerous benefits such as reducing stress, improving concentration, and promoting a healthy lifestyle. Title: {new_title} Blog Content: """ return prompt # Function to generate the blog content def generate_blog(prompt): input_ids = tokenizer.encode(prompt, return_tensors='pt') output = model.generate(input_ids, max_length=800, num_return_sequences=1, no_repeat_ngram_size=2) return tokenizer.decode(output[0], skip_special_tokens=True) # Streamlit interface st.title("AI Blog Generator") # Input box for the blog title title = st.text_input("Enter the Blog Title:") if st.button("Generate Blog"): if title: prompt = make_prompt(title) blog_content = generate_blog(prompt) st.subheader("Generated Blog") st.write(blog_content)