File size: 8,947 Bytes
88eaaac 922156f 88eaaac 922156f 88eaaac 922156f 88eaaac 922156f 88eaaac 922156f 88eaaac 922156f 88eaaac 922156f 88eaaac 922156f 88eaaac 922156f 88eaaac 922156f 88eaaac 922156f 88eaaac 922156f 88eaaac 922156f 88eaaac 8886568 922156f 88eaaac 922156f 88eaaac 922156f 8886568 922156f 8886568 922156f 8886568 922156f 8886568 922156f 8886568 922156f 8886568 922156f 8886568 922156f 8886568 922156f 9991260 922156f 8886568 922156f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# import os
# import ffmpeg
# import whisper
# import streamlit as st
# from groq import Groq
# # Set the app title and description with styling
# st.set_page_config(page_title="Audio/Video Transcription & Summarization", page_icon="ποΈ")
# st.title("ποΈ Audio/Video Transcription & Summarization")
# st.write("Easily upload an audio or video file to get a transcription and a quick summary.")
# # Add a sidebar for settings and instructions
# with st.sidebar:
# st.header("Settings")
# st.write("Configure app preferences here.")
# enable_summary = st.checkbox("Enable Summarization", value=True)
# st.info("Note: Summarization uses the Groq API.")
# # Retrieve the API key from environment variables or Streamlit secrets
# GROQ_API_KEY = os.getenv("GROQ_API_KEY") or st.secrets["GROQ_API_KEY"]
# os.environ["GROQ_API_KEY"] = GROQ_API_KEY
# # Create a temporary directory
# temp_dir = "temp"
# os.makedirs(temp_dir, exist_ok=True)
# # Display file uploader with improved layout and style
# st.subheader("Upload Audio/Video File")
# uploaded_file = st.file_uploader("Choose an audio or video file...", type=["mp4", "mov", "avi", "mkv", "wav", "mp3"])
# # Function to extract audio from video
# def extract_audio(video_path, audio_path="temp/temp_audio.wav"):
# """Extracts audio from video."""
# try:
# # Run ffmpeg command with stderr capture for better error handling
# ffmpeg.input(video_path).output(audio_path).run(overwrite_output=True, capture_stdout=True, capture_stderr=True)
# except ffmpeg.Error as e:
# st.error("Error processing file with FFmpeg: " + e.stderr.decode())
# return audio_path
# # Function to transcribe audio using Whisper model
# def transcribe_audio(audio_path):
# """Transcribes audio to text using Whisper model."""
# model = whisper.load_model("base")
# result = model.transcribe(audio_path)
# return result["text"]
# # Function to summarize text using Groq API
# def summarize_text(text):
# """Summarizes text using Groq API."""
# client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
# response = client.chat.completions.create(
# messages=[{"role": "user", "content": f"Summarize the following text: {text}"}],
# model="llama3-8b-8192"
# )
# summary = response.choices[0].message.content
# return summary
# # Main processing function with progress indicators
# def process_media(media_file):
# """Processes audio or video: extracts audio, transcribes it, and summarizes the transcription if enabled."""
# # Save the uploaded file to a temporary path
# temp_file_path = os.path.join(temp_dir, media_file.name)
# with open(temp_file_path, "wb") as f:
# f.write(media_file.getbuffer())
# # Determine if the file is a video or audio
# if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
# st.info("Extracting audio from video...")
# audio_path = extract_audio(temp_file_path)
# else:
# audio_path = temp_file_path # If already audio, use it as is
# # Transcribe audio to text with progress spinner
# with st.spinner("Transcribing audio..."):
# transcription = transcribe_audio(audio_path)
# st.success("Transcription completed!")
# st.write("### Transcription:")
# st.write(transcription)
# # Summarize transcription if enabled
# if enable_summary:
# with st.spinner("Generating summary..."):
# summary = summarize_text(transcription)
# st.success("Summary generated!")
# st.write("### Summary:")
# st.write(summary)
# # Cleanup temporary files
# os.remove(temp_file_path)
# if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
# os.remove(audio_path)
# # Run the app and handle file upload state
# if uploaded_file is not None:
# st.info("Processing your file...")
# process_media(uploaded_file)
# else:
# st.warning("Please upload an audio or video file to begin.")
import os
import ffmpeg
import whisper
import streamlit as st
from groq import Groq
# Custom CSS for styling
st.markdown("""
<style>
/* Background gradient and color settings */
.stApp {
background-image: linear-gradient(to right, #2e2e2e, #454545);
color: white;
font-family: Arial, sans-serif;
}
/* Container box styling */
.container {
background-color: #333;
padding: 2rem;
border-radius: 10px;
box-shadow: 0px 4px 12px rgba(0, 0, 0, 0.4);
}
/* Header styling */
.header {
color: #ffdd40;
text-align: center;
font-size: 2.5rem;
margin-bottom: 1.5rem;
}
/* Subheader styling */
.subheader {
color: #f0f0f0;
text-align: center;
font-size: 1.2rem;
margin-bottom: 2rem;
}
/* Button styling */
.stButton>button {
background-color: #ffdd40;
color: #333;
border-radius: 5px;
padding: 0.6rem 1.5rem;
font-size: 1rem;
font-weight: bold;
}
.stButton>button:hover {
background-color: #ffcc00;
color: #222;
}
/* Footer styling */
.footer {
text-align: center;
color: #cfcfcf;
font-size: 0.9rem;
margin-top: 2rem;
}
</style>
""", unsafe_allow_html=True)
# App title and description with styling
st.markdown("<div class='header'>ποΈ Audio/Video Transcription & Summarization</div>", unsafe_allow_html=True)
st.markdown("<div class='subheader'>Upload an audio or video file to get a transcription and a concise summary.</div>", unsafe_allow_html=True)
# Sidebar for settings and instructions
with st.sidebar:
st.header("Settings")
st.write("Customize your preferences:")
enable_summary = st.checkbox("Enable Summarization", value=True)
st.info("Note: Summarization uses the Groq API.")
# Retrieve the API key from environment variables or Streamlit secrets
GROQ_API_KEY = os.getenv("GROQ_API_KEY") or st.secrets["GROQ_API_KEY"]
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
# Create a temporary directory
temp_dir = "temp"
os.makedirs(temp_dir, exist_ok=True)
# Enhanced file upload area
st.markdown("<div class='container'>", unsafe_allow_html=True)
uploaded_file = st.file_uploader(
label="Select an audio or video file",
type=["mp4", "mov", "avi", "mkv", "wav", "mp3"],
help="Supported formats: mp4, mov, avi, mkv, wav, mp3"
)
# Function to extract audio from video
def extract_audio(video_path, audio_path="temp/temp_audio.wav"):
try:
ffmpeg.input(video_path).output(audio_path).run(overwrite_output=True, capture_stdout=True, capture_stderr=True)
except ffmpeg.Error as e:
st.error("Error processing file with FFmpeg: " + e.stderr.decode())
return audio_path
# Function to transcribe audio using Whisper model
def transcribe_audio(audio_path):
model = whisper.load_model("base")
result = model.transcribe(audio_path)
return result["text"]
# Function to summarize text using Groq API
def summarize_text(text):
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
response = client.chat.completions.create(
messages=[{"role": "user", "content": f"Summarize the following text: {text}"}],
model="llama3-8b-8192"
)
summary = response.choices[0].message.content
return summary
# Main processing function with progress indicators
def process_media(media_file):
temp_file_path = os.path.join(temp_dir, media_file.name)
with open(temp_file_path, "wb") as f:
f.write(media_file.getbuffer())
# Extract audio if the file is a video
if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
st.info("Extracting audio from video...")
audio_path = extract_audio(temp_file_path)
else:
audio_path = temp_file_path
# Transcribe audio
with st.spinner("Transcribing audio..."):
transcription = transcribe_audio(audio_path)
st.success("Transcription completed!")
st.write("### Transcription:")
st.write(transcription)
# Summarize transcription if enabled
if enable_summary:
with st.spinner("Generating summary..."):
summary = summarize_text(transcription)
st.success("Summary generated!")
st.write("### Summary:")
st.write(summary)
# Cleanup
os.remove(temp_file_path)
if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
os.remove(audio_path)
if uploaded_file:
st.info("Processing your file, please wait...")
process_media(uploaded_file)
else:
st.warning("Please upload an audio or video file to begin.")
# Footer with branding
st.markdown("""
<div class="footer">
© 2024 TranscribePro. Developed by Abdullah Zunorain.
</div>
""", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
|