File size: 8,947 Bytes
88eaaac
 
 
 
 
 
922156f
 
 
 
 
 
 
 
 
 
 
88eaaac
 
 
 
 
922156f
88eaaac
 
 
922156f
 
88eaaac
 
 
 
 
 
 
 
 
922156f
88eaaac
 
922156f
88eaaac
 
922156f
88eaaac
 
 
 
 
 
 
 
 
 
 
 
 
 
922156f
88eaaac
922156f
88eaaac
 
 
 
 
922156f
88eaaac
922156f
88eaaac
 
922156f
88eaaac
922156f
 
 
 
88eaaac
 
 
922156f
 
 
 
 
 
 
 
 
88eaaac
 
 
8886568
922156f
88eaaac
922156f
88eaaac
 
922156f
8886568
 
 
 
 
 
 
 
 
 
 
922156f
 
 
 
 
8886568
922156f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8886568
922156f
 
 
8886568
922156f
 
 
8886568
922156f
 
 
 
 
 
 
8886568
922156f
 
 
 
 
 
 
8886568
922156f
 
 
 
 
8886568
922156f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9991260
922156f
 
 
 
 
 
 
8886568
922156f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# import os
# import ffmpeg
# import whisper
# import streamlit as st
# from groq import Groq

# # Set the app title and description with styling
# st.set_page_config(page_title="Audio/Video Transcription & Summarization", page_icon="πŸŽ™οΈ")
# st.title("πŸŽ™οΈ Audio/Video Transcription & Summarization")
# st.write("Easily upload an audio or video file to get a transcription and a quick summary.")

# # Add a sidebar for settings and instructions
# with st.sidebar:
#     st.header("Settings")
#     st.write("Configure app preferences here.")
#     enable_summary = st.checkbox("Enable Summarization", value=True)
#     st.info("Note: Summarization uses the Groq API.")

# # Retrieve the API key from environment variables or Streamlit secrets
# GROQ_API_KEY = os.getenv("GROQ_API_KEY") or st.secrets["GROQ_API_KEY"]
# os.environ["GROQ_API_KEY"] = GROQ_API_KEY

# # Create a temporary directory
# temp_dir = "temp"
# os.makedirs(temp_dir, exist_ok=True)

# # Display file uploader with improved layout and style
# st.subheader("Upload Audio/Video File")
# uploaded_file = st.file_uploader("Choose an audio or video file...", type=["mp4", "mov", "avi", "mkv", "wav", "mp3"])

# # Function to extract audio from video
# def extract_audio(video_path, audio_path="temp/temp_audio.wav"):
#     """Extracts audio from video."""
#     try:
#         # Run ffmpeg command with stderr capture for better error handling
#         ffmpeg.input(video_path).output(audio_path).run(overwrite_output=True, capture_stdout=True, capture_stderr=True)
#     except ffmpeg.Error as e:
#         st.error("Error processing file with FFmpeg: " + e.stderr.decode())
#     return audio_path

# # Function to transcribe audio using Whisper model
# def transcribe_audio(audio_path):
#     """Transcribes audio to text using Whisper model."""
#     model = whisper.load_model("base")
#     result = model.transcribe(audio_path)
#     return result["text"]

# # Function to summarize text using Groq API
# def summarize_text(text):
#     """Summarizes text using Groq API."""
#     client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
#     response = client.chat.completions.create(
#         messages=[{"role": "user", "content": f"Summarize the following text: {text}"}],
#         model="llama3-8b-8192"
#     )
#     summary = response.choices[0].message.content
#     return summary

# # Main processing function with progress indicators
# def process_media(media_file):
#     """Processes audio or video: extracts audio, transcribes it, and summarizes the transcription if enabled."""
#     # Save the uploaded file to a temporary path
#     temp_file_path = os.path.join(temp_dir, media_file.name)
#     with open(temp_file_path, "wb") as f:
#         f.write(media_file.getbuffer())

#     # Determine if the file is a video or audio
#     if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
#         st.info("Extracting audio from video...")
#         audio_path = extract_audio(temp_file_path)
#     else:
#         audio_path = temp_file_path  # If already audio, use it as is

#     # Transcribe audio to text with progress spinner
#     with st.spinner("Transcribing audio..."):
#         transcription = transcribe_audio(audio_path)
#     st.success("Transcription completed!")
#     st.write("### Transcription:")
#     st.write(transcription)
    
#     # Summarize transcription if enabled
#     if enable_summary:
#         with st.spinner("Generating summary..."):
#             summary = summarize_text(transcription)
#         st.success("Summary generated!")
#         st.write("### Summary:")
#         st.write(summary)

#     # Cleanup temporary files
#     os.remove(temp_file_path)
#     if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
#         os.remove(audio_path)

# # Run the app and handle file upload state
# if uploaded_file is not None:
#     st.info("Processing your file...")
#     process_media(uploaded_file)
# else:
#     st.warning("Please upload an audio or video file to begin.")











import os
import ffmpeg
import whisper
import streamlit as st
from groq import Groq

# Custom CSS for styling
st.markdown("""
    <style>
    /* Background gradient and color settings */
    .stApp {
        background-image: linear-gradient(to right, #2e2e2e, #454545);
        color: white;
        font-family: Arial, sans-serif;
    }
    /* Container box styling */
    .container {
        background-color: #333;
        padding: 2rem;
        border-radius: 10px;
        box-shadow: 0px 4px 12px rgba(0, 0, 0, 0.4);
    }
    /* Header styling */
    .header {
        color: #ffdd40;
        text-align: center;
        font-size: 2.5rem;
        margin-bottom: 1.5rem;
    }
    /* Subheader styling */
    .subheader {
        color: #f0f0f0;
        text-align: center;
        font-size: 1.2rem;
        margin-bottom: 2rem;
    }
    /* Button styling */
    .stButton>button {
        background-color: #ffdd40;
        color: #333;
        border-radius: 5px;
        padding: 0.6rem 1.5rem;
        font-size: 1rem;
        font-weight: bold;
    }
    .stButton>button:hover {
        background-color: #ffcc00;
        color: #222;
    }
    /* Footer styling */
    .footer {
        text-align: center;
        color: #cfcfcf;
        font-size: 0.9rem;
        margin-top: 2rem;
    }
    </style>
""", unsafe_allow_html=True)

# App title and description with styling
st.markdown("<div class='header'>πŸŽ™οΈ Audio/Video Transcription & Summarization</div>", unsafe_allow_html=True)
st.markdown("<div class='subheader'>Upload an audio or video file to get a transcription and a concise summary.</div>", unsafe_allow_html=True)

# Sidebar for settings and instructions
with st.sidebar:
    st.header("Settings")
    st.write("Customize your preferences:")
    enable_summary = st.checkbox("Enable Summarization", value=True)
    st.info("Note: Summarization uses the Groq API.")

# Retrieve the API key from environment variables or Streamlit secrets
GROQ_API_KEY = os.getenv("GROQ_API_KEY") or st.secrets["GROQ_API_KEY"]
os.environ["GROQ_API_KEY"] = GROQ_API_KEY

# Create a temporary directory
temp_dir = "temp"
os.makedirs(temp_dir, exist_ok=True)

# Enhanced file upload area
st.markdown("<div class='container'>", unsafe_allow_html=True)
uploaded_file = st.file_uploader(
    label="Select an audio or video file",
    type=["mp4", "mov", "avi", "mkv", "wav", "mp3"],
    help="Supported formats: mp4, mov, avi, mkv, wav, mp3"
)

# Function to extract audio from video
def extract_audio(video_path, audio_path="temp/temp_audio.wav"):
    try:
        ffmpeg.input(video_path).output(audio_path).run(overwrite_output=True, capture_stdout=True, capture_stderr=True)
    except ffmpeg.Error as e:
        st.error("Error processing file with FFmpeg: " + e.stderr.decode())
    return audio_path

# Function to transcribe audio using Whisper model
def transcribe_audio(audio_path):
    model = whisper.load_model("base")
    result = model.transcribe(audio_path)
    return result["text"]

# Function to summarize text using Groq API
def summarize_text(text):
    client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
    response = client.chat.completions.create(
        messages=[{"role": "user", "content": f"Summarize the following text: {text}"}],
        model="llama3-8b-8192"
    )
    summary = response.choices[0].message.content
    return summary

# Main processing function with progress indicators
def process_media(media_file):
    temp_file_path = os.path.join(temp_dir, media_file.name)
    with open(temp_file_path, "wb") as f:
        f.write(media_file.getbuffer())

    # Extract audio if the file is a video
    if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
        st.info("Extracting audio from video...")
        audio_path = extract_audio(temp_file_path)
    else:
        audio_path = temp_file_path

    # Transcribe audio
    with st.spinner("Transcribing audio..."):
        transcription = transcribe_audio(audio_path)
    st.success("Transcription completed!")
    st.write("### Transcription:")
    st.write(transcription)
    
    # Summarize transcription if enabled
    if enable_summary:
        with st.spinner("Generating summary..."):
            summary = summarize_text(transcription)
        st.success("Summary generated!")
        st.write("### Summary:")
        st.write(summary)

    # Cleanup
    os.remove(temp_file_path)
    if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
        os.remove(audio_path)

if uploaded_file:
    st.info("Processing your file, please wait...")
    process_media(uploaded_file)
else:
    st.warning("Please upload an audio or video file to begin.")

# Footer with branding
st.markdown("""
    <div class="footer">
        &copy; 2024 TranscribePro. Developed by Abdullah Zunorain.
    </div>
""", unsafe_allow_html=True)

st.markdown("</div>", unsafe_allow_html=True)