Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,21 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from huggingface_hub import InferenceClient
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
|
|
|
| 10 |
def respond(
|
| 11 |
message,
|
| 12 |
history: list[tuple[str, str]],
|
|
@@ -27,23 +36,20 @@ def respond(
|
|
| 27 |
|
| 28 |
response = ""
|
| 29 |
|
| 30 |
-
for
|
| 31 |
messages,
|
| 32 |
max_tokens=max_tokens,
|
| 33 |
stream=True,
|
| 34 |
temperature=temperature,
|
| 35 |
top_p=top_p,
|
| 36 |
):
|
| 37 |
-
token =
|
| 38 |
-
|
| 39 |
response += token
|
| 40 |
yield response
|
| 41 |
|
| 42 |
-
|
| 43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 44 |
-
"""
|
| 45 |
demo = gr.ChatInterface(
|
| 46 |
-
respond,
|
| 47 |
additional_inputs=[
|
| 48 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 49 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
|
@@ -58,6 +64,6 @@ demo = gr.ChatInterface(
|
|
| 58 |
],
|
| 59 |
)
|
| 60 |
|
| 61 |
-
|
| 62 |
if __name__ == "__main__":
|
| 63 |
-
demo.launch()
|
|
|
|
| 1 |
+
from unsloth import FastLanguageModel
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
|
| 4 |
+
# Declare necessary variables
|
| 5 |
+
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
| 6 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
| 7 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
| 8 |
|
| 9 |
+
# Load the model and tokenizer
|
| 10 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 11 |
+
model_name="abdfajar707/llama3_8B_lora_model_rkp_pn2025_v3", # YOUR MODEL YOU USED FOR TRAINING
|
| 12 |
+
max_seq_length=max_seq_length,
|
| 13 |
+
dtype=dtype,
|
| 14 |
+
load_in_4bit=load_in_4bit,
|
| 15 |
+
)
|
| 16 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
| 17 |
|
| 18 |
+
# Define the respond function
|
| 19 |
def respond(
|
| 20 |
message,
|
| 21 |
history: list[tuple[str, str]],
|
|
|
|
| 36 |
|
| 37 |
response = ""
|
| 38 |
|
| 39 |
+
for msg in model.chat_completion(
|
| 40 |
messages,
|
| 41 |
max_tokens=max_tokens,
|
| 42 |
stream=True,
|
| 43 |
temperature=temperature,
|
| 44 |
top_p=top_p,
|
| 45 |
):
|
| 46 |
+
token = msg.choices[0].delta.content
|
|
|
|
| 47 |
response += token
|
| 48 |
yield response
|
| 49 |
|
| 50 |
+
# Create the Gradio interface
|
|
|
|
|
|
|
| 51 |
demo = gr.ChatInterface(
|
| 52 |
+
fn=respond,
|
| 53 |
additional_inputs=[
|
| 54 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 55 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
|
|
|
| 64 |
],
|
| 65 |
)
|
| 66 |
|
| 67 |
+
# Launch the Gradio interface
|
| 68 |
if __name__ == "__main__":
|
| 69 |
+
demo.launch()
|