Update app.py
Browse files
app.py
CHANGED
|
@@ -6,23 +6,25 @@ from openai import OpenAI
|
|
| 6 |
from llama_index.node_parser import SemanticSplitterNodeParser
|
| 7 |
from llama_index.embeddings import OpenAIEmbedding
|
| 8 |
from llama_index.ingestion import IngestionPipeline
|
| 9 |
-
from pinecone
|
| 10 |
-
from llama_index.vector_stores import PineconeVectorStore
|
| 11 |
-
from llama_index import VectorStoreIndex
|
| 12 |
-
from llama_index.retrievers import VectorIndexRetriever
|
| 13 |
-
from llama_index.query_engine import RetrieverQueryEngine
|
| 14 |
|
| 15 |
# Set OpenAI API key from Streamlit secrets
|
|
|
|
| 16 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
| 17 |
-
pinecone_api_key = os.getenv("PINECONE_API_KEY")
|
| 18 |
|
| 19 |
# Initialize OpenAI client
|
| 20 |
client = OpenAI(api_key=openai_api_key)
|
| 21 |
|
| 22 |
# Initialize Pinecone connection
|
| 23 |
-
|
| 24 |
index_name = "annualreport"
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
|
| 27 |
|
| 28 |
# Initialize vector index and retriever
|
|
|
|
| 6 |
from llama_index.node_parser import SemanticSplitterNodeParser
|
| 7 |
from llama_index.embeddings import OpenAIEmbedding
|
| 8 |
from llama_index.ingestion import IngestionPipeline
|
| 9 |
+
from pinecone import PineconeClient, Index, create_index
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Set OpenAI API key from Streamlit secrets
|
| 12 |
+
pinecone_api_key = os.getenv("PINECONE_API_KEY")
|
| 13 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
| 14 |
|
| 15 |
# Initialize OpenAI client
|
| 16 |
client = OpenAI(api_key=openai_api_key)
|
| 17 |
|
| 18 |
# Initialize Pinecone connection
|
| 19 |
+
pinecone_client = PineconeClient(api_key=pinecone_api_key)
|
| 20 |
index_name = "annualreport"
|
| 21 |
+
|
| 22 |
+
# Check if the index exists, if not, create it
|
| 23 |
+
if index_name not in pinecone_client.list_indexes():
|
| 24 |
+
create_index(name=index_name, dimension=1536) # Dimension should match your embedding model
|
| 25 |
+
|
| 26 |
+
# Initialize Pinecone index
|
| 27 |
+
pinecone_index = Index(index_name)
|
| 28 |
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
|
| 29 |
|
| 30 |
# Initialize vector index and retriever
|