ababio commited on
Commit
7064529
1 Parent(s): a58250e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -12
app.py CHANGED
@@ -1,42 +1,37 @@
1
  import os
2
- import time
3
  import streamlit as st
4
- from getpass import getpass
5
  from openai import OpenAI
6
  from llama_index.node_parser import SemanticSplitterNodeParser
7
  from llama_index.embeddings import OpenAIEmbedding
8
  from llama_index.ingestion import IngestionPipeline
9
-
10
  from pinecone.grpc import PineconeGRPC
11
- from pinecone import ServerlessSpec
12
-
13
  from llama_index.vector_stores import PineconeVectorStore
14
-
15
  from llama_index import VectorStoreIndex
16
  from llama_index.retrievers import VectorIndexRetriever
17
  from llama_index.query_engine import RetrieverQueryEngine
18
 
19
- # Set OpenAI API key from Streamlit secrets
20
- pinecone_api_key = os.getenv("PINECONE_API_KEY")
21
  openai_api_key = os.getenv("OPENAI_API_KEY")
 
 
22
 
23
  # Initialize OpenAI client
24
  client = OpenAI(api_key=openai_api_key)
25
 
26
-
27
  # Initialize connection to Pinecone
28
  pc = PineconeGRPC(api_key=pinecone_api_key)
29
- index_name = "anualreport"
30
 
31
  # Initialize your index
 
 
 
32
  pinecone_index = pc.Index(index_name)
33
 
34
  # Initialize VectorStore
35
  vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
36
-
37
  pinecone_index.describe_index_stats()
38
 
39
-
40
  # Initialize vector index and retriever
41
  vector_index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
42
  retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=5)
 
1
  import os
 
2
  import streamlit as st
 
3
  from openai import OpenAI
4
  from llama_index.node_parser import SemanticSplitterNodeParser
5
  from llama_index.embeddings import OpenAIEmbedding
6
  from llama_index.ingestion import IngestionPipeline
 
7
  from pinecone.grpc import PineconeGRPC
 
 
8
  from llama_index.vector_stores import PineconeVectorStore
 
9
  from llama_index import VectorStoreIndex
10
  from llama_index.retrievers import VectorIndexRetriever
11
  from llama_index.query_engine import RetrieverQueryEngine
12
 
13
+ # Set OpenAI API key from environment variables
 
14
  openai_api_key = os.getenv("OPENAI_API_KEY")
15
+ pinecone_api_key = os.getenv("PINECONE_API_KEY")
16
+ index_name = os.getenv("annualreport")
17
 
18
  # Initialize OpenAI client
19
  client = OpenAI(api_key=openai_api_key)
20
 
 
21
  # Initialize connection to Pinecone
22
  pc = PineconeGRPC(api_key=pinecone_api_key)
23
+
24
 
25
  # Initialize your index
26
+ if index_name not in pc.list_indexes():
27
+ pc.create_index(name=index_name, dimension=1536)
28
+
29
  pinecone_index = pc.Index(index_name)
30
 
31
  # Initialize VectorStore
32
  vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
 
33
  pinecone_index.describe_index_stats()
34
 
 
35
  # Initialize vector index and retriever
36
  vector_index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
37
  retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=5)