Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,18 @@
|
|
1 |
import os
|
2 |
from getpass import getpass
|
3 |
-
import
|
|
|
|
|
|
|
|
|
4 |
from llama_index.node_parser import SemanticSplitterNodeParser
|
5 |
from llama_index.embeddings import OpenAIEmbedding
|
6 |
from llama_index.ingestion import IngestionPipeline
|
7 |
-
from pinecone.grpc import PineconeGRPC
|
8 |
-
from pinecone import ServerlessSpec
|
9 |
-
from llama_index.vector_stores import PineconeVectorStore
|
10 |
-
from llama_index import VectorStoreIndex
|
11 |
-
from llama_index.retrievers import VectorIndexRetriever
|
12 |
-
from llama_index.query_engine import RetrieverQueryEngine
|
13 |
-
|
14 |
-
# Streamlit UI for API keys
|
15 |
-
st.title("Annual Report Summary Query")
|
16 |
|
17 |
-
#
|
18 |
-
pinecone_api_key = st.text_input("Enter your Pinecone API Key:", type="password")
|
19 |
-
openai_api_key = st.text_input("Enter your OpenAI API Key:", type="password")
|
20 |
-
|
21 |
-
# Initialize the model and pipeline
|
22 |
embed_model = OpenAIEmbedding(api_key=openai_api_key)
|
|
|
|
|
23 |
pipeline = IngestionPipeline(
|
24 |
transformations=[
|
25 |
SemanticSplitterNodeParser(
|
@@ -31,35 +24,52 @@ pipeline = IngestionPipeline(
|
|
31 |
],
|
32 |
)
|
33 |
|
|
|
|
|
|
|
|
|
|
|
34 |
# Initialize connection to Pinecone
|
35 |
pc = PineconeGRPC(api_key=pinecone_api_key)
|
36 |
index_name = "anualreport"
|
|
|
|
|
37 |
pinecone_index = pc.Index(index_name)
|
|
|
|
|
38 |
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
|
|
|
39 |
pinecone_index.describe_index_stats()
|
40 |
|
41 |
-
|
|
|
|
|
|
|
42 |
if not os.getenv('OPENAI_API_KEY'):
|
43 |
os.environ['OPENAI_API_KEY'] = openai_api_key
|
44 |
|
45 |
-
# Instantiate VectorStoreIndex object
|
46 |
vector_index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
|
|
|
|
|
47 |
retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=5)
|
48 |
-
query_engine = RetrieverQueryEngine(retriever=retriever)
|
49 |
|
50 |
-
|
51 |
-
query = st.text_input("Enter your query:", "Summary of the Annual Report?")
|
52 |
|
53 |
-
#
|
54 |
-
|
55 |
-
llm_query = query_engine.query(query)
|
56 |
-
st.write("Results:")
|
57 |
-
st.write(llm_query.response)
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
|
|
|
1 |
import os
|
2 |
from getpass import getpass
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
pinecone_api_key = os.getenv("PINECONE_API_KEY") or getpass("Enter your Pinecone API Key: ")
|
6 |
+
openai_api_key = os.getenv("OPENAI_API_KEY") or getpass("Enter your OpenAI API Key: ")
|
7 |
+
|
8 |
from llama_index.node_parser import SemanticSplitterNodeParser
|
9 |
from llama_index.embeddings import OpenAIEmbedding
|
10 |
from llama_index.ingestion import IngestionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# This will be the model we use both for Node parsing and for vectorization
|
|
|
|
|
|
|
|
|
13 |
embed_model = OpenAIEmbedding(api_key=openai_api_key)
|
14 |
+
|
15 |
+
# Define the initial pipeline
|
16 |
pipeline = IngestionPipeline(
|
17 |
transformations=[
|
18 |
SemanticSplitterNodeParser(
|
|
|
24 |
],
|
25 |
)
|
26 |
|
27 |
+
from pinecone.grpc import PineconeGRPC
|
28 |
+
from pinecone import ServerlessSpec
|
29 |
+
|
30 |
+
from llama_index.vector_stores import PineconeVectorStore
|
31 |
+
|
32 |
# Initialize connection to Pinecone
|
33 |
pc = PineconeGRPC(api_key=pinecone_api_key)
|
34 |
index_name = "anualreport"
|
35 |
+
|
36 |
+
# Initialize your index
|
37 |
pinecone_index = pc.Index(index_name)
|
38 |
+
|
39 |
+
# Initialize VectorStore
|
40 |
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
|
41 |
+
|
42 |
pinecone_index.describe_index_stats()
|
43 |
|
44 |
+
from llama_index import VectorStoreIndex
|
45 |
+
from llama_index.retrievers import VectorIndexRetriever
|
46 |
+
|
47 |
+
# Set the OpenAI API key if not already set
|
48 |
if not os.getenv('OPENAI_API_KEY'):
|
49 |
os.environ['OPENAI_API_KEY'] = openai_api_key
|
50 |
|
51 |
+
# Instantiate VectorStoreIndex object from our vector_store object
|
52 |
vector_index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
|
53 |
+
|
54 |
+
# Grab 5 search results
|
55 |
retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=5)
|
|
|
56 |
|
57 |
+
from llama_index.query_engine import RetrieverQueryEngine
|
|
|
58 |
|
59 |
+
# Pass in your retriever from above, which is configured to return the top 5 results
|
60 |
+
query_engine = RetrieverQueryEngine(retriever=retriever)
|
|
|
|
|
|
|
61 |
|
62 |
+
def query_anual_report(query):
|
63 |
+
response = query_engine.query(query)
|
64 |
+
return response.response
|
65 |
|
66 |
+
# Define Gradio Interface
|
67 |
+
iface = gr.Interface(
|
68 |
+
fn=query_anual_report,
|
69 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder="Ask something..."),
|
70 |
+
outputs="text",
|
71 |
+
title="Annual Report Query",
|
72 |
+
description="Ask questions about the annual report."
|
73 |
+
)
|
74 |
|
75 |
+
iface.launch()
|