|
|
|
import streamlit as st |
|
import os |
|
from getpass import getpass |
|
from transformers import pipeline |
|
|
|
from llama_index.node_parser import SemanticSplitterNodeParser |
|
from llama_index.embeddings import OpenAIEmbedding |
|
from llama_index.ingestion import IngestionPipeline |
|
from pinecone.grpc import PineconeGRPC |
|
from pinecone import ServerlessSpec |
|
from llama_index.vector_stores import PineconeVectorStore |
|
from llama_index import VectorStoreIndex |
|
from llama_index.retrievers import VectorIndexRetriever |
|
from llama_index.query_engine import RetrieverQueryEngine |
|
|
|
|
|
def initialize_pipeline(): |
|
pinecone_api_key = os.getenv("PINECONE_API_KEY") |
|
openai_api_key = os.getenv("OPENAI_API_KEY") |
|
|
|
embed_model = OpenAIEmbedding(api_key=openai_api_key) |
|
pipeline = IngestionPipeline( |
|
transformations=[ |
|
SemanticSplitterNodeParser( |
|
buffer_size=1, |
|
breakpoint_percentile_threshold=95, |
|
embed_model=embed_model, |
|
), |
|
embed_model, |
|
], |
|
) |
|
|
|
pc = PineconeGRPC(api_key=pinecone_api_key) |
|
index_name = "anualreport" |
|
pinecone_index = pc.Index(index_name) |
|
vector_store = PineconeVectorStore(pinecone_index=pinecone_index) |
|
pinecone_index.describe_index_stats() |
|
|
|
if not os.getenv('OPENAI_API_KEY'): |
|
os.environ['OPENAI_API_KEY'] = openai_api_key |
|
|
|
vector_index = VectorStoreIndex.from_vector_store(vector_store=vector_store) |
|
retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=5) |
|
query_engine = RetrieverQueryEngine(retriever=retriever) |
|
|
|
return query_engine |
|
|
|
|
|
st.title("Chat with Annual Reports") |
|
|
|
|
|
query_engine = initialize_pipeline() |
|
|
|
|
|
conversation_pipeline = pipeline("conversational", model="microsoft/DialoGPT-medium") |
|
|
|
|
|
user_input = st.text_input("You: ", "") |
|
|
|
if user_input: |
|
|
|
llm_query = query_engine.query(user_input) |
|
response = llm_query.response |
|
|
|
|
|
conversation = conversation_pipeline([user_input, response]) |
|
bot_response = conversation[-1]["generated_text"] |
|
|
|
|
|
st.text_area("Bot: ", bot_response, height=200) |
|
|