Spaces:
Sleeping
Sleeping
Aashu1308
commited on
Commit
·
391b9f9
1
Parent(s):
577d85e
Added app model requirements and dockerfile without .env
Browse files- .gitignore +1 -0
- Dockerfile +17 -0
- app.py +332 -0
- model/fuzz_dnn_full_model.keras +0 -0
- model/fuzzy_dnn_scaler.pkl +3 -0
- requirements.txt +7 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
.env
|
Dockerfile
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM docker.io/tensorflow/tensorflow:2.18.0
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
|
| 5 |
+
RUN apt-get update && apt-get install -y python3-pip && rm -rf /var/lib/apt/lists/*
|
| 6 |
+
|
| 7 |
+
COPY requirements.txt .
|
| 8 |
+
|
| 9 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 10 |
+
|
| 11 |
+
COPY app_web.py .
|
| 12 |
+
|
| 13 |
+
COPY model/ ./model/
|
| 14 |
+
|
| 15 |
+
EXPOSE 7860
|
| 16 |
+
|
| 17 |
+
CMD ["python", "app_web.py"]
|
app.py
ADDED
|
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from tensorflow.keras.models import load_model
|
| 4 |
+
import joblib
|
| 5 |
+
from openai import OpenAI
|
| 6 |
+
from dotenv import load_dotenv
|
| 7 |
+
import os
|
| 8 |
+
import json
|
| 9 |
+
import gradio as gr
|
| 10 |
+
import logging
|
| 11 |
+
|
| 12 |
+
logging.basicConfig(level=logging.INFO)
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
+
|
| 15 |
+
load_dotenv()
|
| 16 |
+
API = os.environ.get("OPENROUTER_API_KEY")
|
| 17 |
+
logger.info(f"API Key loaded: {bool(API_KEY)}")
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# Baselines
|
| 21 |
+
BASELINE_LOWER = {
|
| 22 |
+
'Household': 30,
|
| 23 |
+
'Food': 40,
|
| 24 |
+
'Shopping': 7,
|
| 25 |
+
'Transportation': 5,
|
| 26 |
+
'Health & Fitness': 5,
|
| 27 |
+
'Entertainment': 5,
|
| 28 |
+
'Beauty': 4,
|
| 29 |
+
'Investment': 4,
|
| 30 |
+
}
|
| 31 |
+
BASELINE_UPPER = {
|
| 32 |
+
'Household': 11,
|
| 33 |
+
'Food': 10,
|
| 34 |
+
'Shopping': 13,
|
| 35 |
+
'Transportation': 11,
|
| 36 |
+
'Health & Fitness': 10,
|
| 37 |
+
'Entertainment': 18,
|
| 38 |
+
'Beauty': 8,
|
| 39 |
+
'Investment': 19,
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# Load model and scaler
|
| 44 |
+
def load_financial_model(
|
| 45 |
+
model_path='model/fuzz_dnn_full_model.keras',
|
| 46 |
+
scaler_path='model/fuzzy_dnn_scaler.pkl',
|
| 47 |
+
):
|
| 48 |
+
logger.info("Starting to load model and scaler")
|
| 49 |
+
try:
|
| 50 |
+
model = load_model(model_path)
|
| 51 |
+
scaler = joblib.load(scaler_path)
|
| 52 |
+
logger.info("Model and scaler loaded successfully")
|
| 53 |
+
return model, scaler
|
| 54 |
+
except Exception as e:
|
| 55 |
+
print(f"Error loading model or scaler: {e}")
|
| 56 |
+
logger.error(f"Error loading model or scaler: {e}")
|
| 57 |
+
return None, None
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# Prepare features
|
| 61 |
+
def prepare_features(df):
|
| 62 |
+
df['spend_deviation_ratio'] = df['Percent_Spend'] / (df['Deviation'].abs() + 1)
|
| 63 |
+
return df[['Percent_Spend', 'Deviation', 'spend_deviation_ratio']]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# Determine income level
|
| 67 |
+
def determine_income_level(total_spending):
|
| 68 |
+
return 'upper' if total_spending >= 5000 else 'lower'
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# Predict spending pattern
|
| 72 |
+
def predict_spending_pattern(model, scaler, input_data):
|
| 73 |
+
total_spending = sum(input_data.values())
|
| 74 |
+
income_level = determine_income_level(total_spending)
|
| 75 |
+
baseline = BASELINE_UPPER if income_level == 'upper' else BASELINE_LOWER
|
| 76 |
+
|
| 77 |
+
percent_spend = {k: (v / total_spending) * 100 for k, v in input_data.items()}
|
| 78 |
+
rows = []
|
| 79 |
+
for category, spend_percent in percent_spend.items():
|
| 80 |
+
deviation = spend_percent - baseline.get(category, 0)
|
| 81 |
+
rows.append(
|
| 82 |
+
{
|
| 83 |
+
'Category': category,
|
| 84 |
+
'Percent_Spend': spend_percent,
|
| 85 |
+
'Deviation': deviation,
|
| 86 |
+
}
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
pred_df = pd.DataFrame(rows)
|
| 90 |
+
X = prepare_features(pred_df)
|
| 91 |
+
X_scaled = scaler.transform(X)
|
| 92 |
+
predictions = model.predict(X_scaled, verbose=0)
|
| 93 |
+
|
| 94 |
+
results = pd.DataFrame(
|
| 95 |
+
{
|
| 96 |
+
'Category': pred_df['Category'],
|
| 97 |
+
'Percent_Spend': pred_df['Percent_Spend'],
|
| 98 |
+
'Deviation': pred_df['Deviation'],
|
| 99 |
+
'Raw_Score': predictions.flatten(),
|
| 100 |
+
'Prediction': ['Good' if pred >= 0.6 else 'Bad' for pred in predictions],
|
| 101 |
+
}
|
| 102 |
+
)
|
| 103 |
+
return (
|
| 104 |
+
results.sort_values('Percent_Spend', ascending=False),
|
| 105 |
+
total_spending,
|
| 106 |
+
income_level,
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
# Suggest spending pattern
|
| 111 |
+
def suggest_spending_pattern(results, total_spending, input_data, income_level):
|
| 112 |
+
results = results.copy()
|
| 113 |
+
suggested_spending = {}
|
| 114 |
+
bad_categories = results[results['Prediction'] == 'Bad']
|
| 115 |
+
good_categories = results[results['Prediction'] == 'Good']
|
| 116 |
+
baseline = BASELINE_UPPER if income_level == 'upper' else BASELINE_LOWER
|
| 117 |
+
|
| 118 |
+
if not bad_categories.empty:
|
| 119 |
+
total_to_redistribute = sum(
|
| 120 |
+
input_data[row['Category']]
|
| 121 |
+
* min(max(abs(row['Deviation']) * 0.1, 0.25), 0.50)
|
| 122 |
+
for _, row in bad_categories.iterrows()
|
| 123 |
+
if row['Category'] not in ['Household', 'Food']
|
| 124 |
+
)
|
| 125 |
+
good_total = sum(input_data[cat] for cat in good_categories['Category'])
|
| 126 |
+
distribution_weights = {
|
| 127 |
+
cat: input_data[cat] / good_total if good_total > 0 else 0
|
| 128 |
+
for cat in good_categories['Category']
|
| 129 |
+
}
|
| 130 |
+
|
| 131 |
+
for category in input_data:
|
| 132 |
+
original = float(input_data[category])
|
| 133 |
+
baseline_dollars = total_spending * (baseline[category] / 100)
|
| 134 |
+
if category in bad_categories['Category'].values and category not in [
|
| 135 |
+
'Household',
|
| 136 |
+
'Food',
|
| 137 |
+
]:
|
| 138 |
+
reduction = min(
|
| 139 |
+
max(
|
| 140 |
+
abs(
|
| 141 |
+
results[results['Category'] == category][
|
| 142 |
+
'Deviation'
|
| 143 |
+
].values[0]
|
| 144 |
+
)
|
| 145 |
+
* 0.1,
|
| 146 |
+
0.25,
|
| 147 |
+
),
|
| 148 |
+
0.50,
|
| 149 |
+
)
|
| 150 |
+
suggested = original * (1 - reduction)
|
| 151 |
+
else:
|
| 152 |
+
weight = distribution_weights.get(category, 0)
|
| 153 |
+
increase = total_to_redistribute * weight
|
| 154 |
+
suggested = max(
|
| 155 |
+
original + increase,
|
| 156 |
+
baseline_dollars if category in ['Household', 'Food'] else original,
|
| 157 |
+
)
|
| 158 |
+
suggested_spending[category] = (original, round(suggested, 2))
|
| 159 |
+
else:
|
| 160 |
+
suggested_spending = {
|
| 161 |
+
cat: (float(val), float(val)) for cat, val in input_data.items()
|
| 162 |
+
}
|
| 163 |
+
return suggested_spending
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
# Format for Mistral
|
| 167 |
+
def format_for_mistral(
|
| 168 |
+
results, suggested_spending, total_spending, income_level, input_data
|
| 169 |
+
):
|
| 170 |
+
return {
|
| 171 |
+
"total_spending": total_spending,
|
| 172 |
+
"income_level": income_level,
|
| 173 |
+
"categories": [
|
| 174 |
+
{
|
| 175 |
+
"category": row['Category'],
|
| 176 |
+
"percent_spend": round(row['Percent_Spend'], 2),
|
| 177 |
+
"actual_dollars": round(input_data[row['Category']], 2),
|
| 178 |
+
"deviation": round(row['Deviation'], 2),
|
| 179 |
+
"prediction": row['Prediction'],
|
| 180 |
+
"suggested_dollars": suggested_spending[row['Category']][1],
|
| 181 |
+
}
|
| 182 |
+
for _, row in results.iterrows()
|
| 183 |
+
],
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
# Get spending summary (Mistral API call)
|
| 188 |
+
def get_spending_summary(spending_data):
|
| 189 |
+
client = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API)
|
| 190 |
+
analysis_prompt = f"""
|
| 191 |
+
You are a financial counselor analyzing a ${spending_data['total_spending']} monthly budget for a {spending_data['income_level']} income individual. Follow these strict rules:
|
| 192 |
+
### Financial Literacy Summary
|
| 193 |
+
#### Praise
|
| 194 |
+
For each 'Good' category:
|
| 195 |
+
⚠️ **Only show if ALL conditions met:**
|
| 196 |
+
- `prediction` = 'Good'
|
| 197 |
+
- `abs(deviation)` < 2%
|
| 198 |
+
✅ **{{category}} (${{actual_dollars}})** -
|
| 199 |
+
Explain using:
|
| 200 |
+
1. "% vs baseline: {{percent_spend}}% ({{deviation:+.2f}}% vs {{baseline}}%)"
|
| 201 |
+
2. Practical benefit
|
| 202 |
+
3. Savings impact ONLY if `deviation` > 0
|
| 203 |
+
#### Suggestions
|
| 204 |
+
⚠️ **Only show if ALL conditions met:**
|
| 205 |
+
- `prediction` = 'Bad'
|
| 206 |
+
- `abs(deviation)` > 2%
|
| 207 |
+
- `suggested_dollars` ≠ `actual_dollars`
|
| 208 |
+
For each 'Bad' category:
|
| 209 |
+
⚠️ **{{category}} (${{actual_dollars}} → ${{suggested_dollars}})** -
|
| 210 |
+
Structure as:
|
| 211 |
+
1. If suggested INCREASE: "Prioritize {{category}} by adding ${{suggested_dollars - actual_dollars}}..."
|
| 212 |
+
2. If suggested DECREASE: "Reduce {{category}} by ${{actual_dollars - suggested_dollars}}..."
|
| 213 |
+
#### Key Principle
|
| 214 |
+
Identify the MOST URGENT issue using largest absolute deviation...
|
| 215 |
+
**Baseline Reference ({spending_data['income_level'].capitalize()} Income):**
|
| 216 |
+
{'Food (10%), Household (11%), Shopping (13%), Transportation (11%), Health & Fitness (10%), Entertainment (18%), Beauty (8%), Investment (19%)' if spending_data['income_level'] == 'upper' else 'Food (40%), Household (30%), Shopping (7%), Transportation (5%), Health & Fitness (5%), Entertainment (5%), Beauty (4%), Investment (4%)'}
|
| 217 |
+
**Data:**
|
| 218 |
+
{json.dumps(spending_data, indent=2)}
|
| 219 |
+
**Begin Analysis:**
|
| 220 |
+
"""
|
| 221 |
+
try:
|
| 222 |
+
response = client.chat.completions.create(
|
| 223 |
+
model="mistralai/mistral-small-24b-instruct-2501:free",
|
| 224 |
+
messages=[{"role": "user", "content": analysis_prompt}],
|
| 225 |
+
temperature=0.5,
|
| 226 |
+
)
|
| 227 |
+
return response.choices[0].message.content
|
| 228 |
+
except Exception as e:
|
| 229 |
+
return f"Error calling Mistral API: {e}"
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
# Gradio interface function
|
| 233 |
+
def analyze_spending(
|
| 234 |
+
household,
|
| 235 |
+
food,
|
| 236 |
+
shopping,
|
| 237 |
+
transportation,
|
| 238 |
+
health_fitness,
|
| 239 |
+
entertainment,
|
| 240 |
+
beauty,
|
| 241 |
+
investment,
|
| 242 |
+
):
|
| 243 |
+
input_data = {
|
| 244 |
+
'Household': float(household),
|
| 245 |
+
'Food': float(food),
|
| 246 |
+
'Shopping': float(shopping),
|
| 247 |
+
'Transportation': float(transportation),
|
| 248 |
+
'Health & Fitness': float(health_fitness),
|
| 249 |
+
'Entertainment': float(entertainment),
|
| 250 |
+
'Beauty': float(beauty),
|
| 251 |
+
'Investment': float(investment),
|
| 252 |
+
}
|
| 253 |
+
logger.info("Before loading model")
|
| 254 |
+
model, scaler = load_financial_model()
|
| 255 |
+
logger.info("After loading model")
|
| 256 |
+
if model is None or scaler is None:
|
| 257 |
+
return "Error: Model or scaler failed to load.", None, None, None
|
| 258 |
+
|
| 259 |
+
results, total_spending, income_level = predict_spending_pattern(
|
| 260 |
+
model, scaler, input_data
|
| 261 |
+
)
|
| 262 |
+
suggested_spending = suggest_spending_pattern(
|
| 263 |
+
results, total_spending, input_data, income_level
|
| 264 |
+
)
|
| 265 |
+
spending_data = format_for_mistral(
|
| 266 |
+
results, suggested_spending, total_spending, income_level, input_data
|
| 267 |
+
)
|
| 268 |
+
summary = get_spending_summary(spending_data)
|
| 269 |
+
|
| 270 |
+
# Format suggested adjustments as a DataFrame
|
| 271 |
+
suggested_df = pd.DataFrame(
|
| 272 |
+
[(cat, orig, sugg) for cat, (orig, sugg) in suggested_spending.items()],
|
| 273 |
+
columns=['Category', 'Original ($)', 'Suggested ($)'],
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
return (
|
| 277 |
+
f"## Spending Analysis ({income_level.capitalize()} Income)\nTotal Spending: ${total_spending:.2f}",
|
| 278 |
+
results, # For DataFrame display
|
| 279 |
+
suggested_df, # For DataFrame display
|
| 280 |
+
summary, # Financial summary
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
# Gradio UI
|
| 285 |
+
logger.info("Setting up Gradio interface")
|
| 286 |
+
with gr.Blocks(
|
| 287 |
+
title="Personal Finance Assistant", css=".gr-button {margin-top: 10px}"
|
| 288 |
+
) as demo:
|
| 289 |
+
gr.Markdown("# Personal Finance Assistant")
|
| 290 |
+
gr.Markdown("Enter your monthly spending in each category ($):")
|
| 291 |
+
with gr.Row():
|
| 292 |
+
household = gr.Textbox(label="Household", value="500")
|
| 293 |
+
food = gr.Textbox(label="Food", value="100")
|
| 294 |
+
shopping = gr.Textbox(label="Shopping", value="950")
|
| 295 |
+
transportation = gr.Textbox(label="Transportation", value="100")
|
| 296 |
+
with gr.Row():
|
| 297 |
+
health_fitness = gr.Textbox(label="Health & Fitness", value="200")
|
| 298 |
+
entertainment = gr.Textbox(label="Entertainment", value="200")
|
| 299 |
+
beauty = gr.Textbox(label="Beauty", value="100")
|
| 300 |
+
investment = gr.Textbox(label="Investment", value="100")
|
| 301 |
+
|
| 302 |
+
submit_btn = gr.Button("Analyze")
|
| 303 |
+
|
| 304 |
+
# Output components
|
| 305 |
+
with gr.Column():
|
| 306 |
+
loading = gr.Markdown("### Analysis Results\n*Waiting for input...*")
|
| 307 |
+
title = gr.Markdown()
|
| 308 |
+
current_spending = gr.DataFrame(label="Current Spending")
|
| 309 |
+
suggested_adjustments = gr.DataFrame(label="Suggested Adjustments")
|
| 310 |
+
financial_summary = gr.Markdown()
|
| 311 |
+
|
| 312 |
+
# Handle click with loading state
|
| 313 |
+
def start_loading():
|
| 314 |
+
return "### Analysis Results\n*Processing your spending data...*"
|
| 315 |
+
|
| 316 |
+
submit_btn.click(fn=start_loading, inputs=None, outputs=loading).then(
|
| 317 |
+
fn=analyze_spending,
|
| 318 |
+
inputs=[
|
| 319 |
+
household,
|
| 320 |
+
food,
|
| 321 |
+
shopping,
|
| 322 |
+
transportation,
|
| 323 |
+
health_fitness,
|
| 324 |
+
entertainment,
|
| 325 |
+
beauty,
|
| 326 |
+
investment,
|
| 327 |
+
],
|
| 328 |
+
outputs=[title, current_spending, suggested_adjustments, financial_summary],
|
| 329 |
+
queue=True,
|
| 330 |
+
)
|
| 331 |
+
logger.info("Launching Gradio server")
|
| 332 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
model/fuzz_dnn_full_model.keras
ADDED
|
Binary file (192 kB). View file
|
|
|
model/fuzzy_dnn_scaler.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9561bf7e8c89b9a9d36ff8cd06d9537808d297d6f93a334a628bfe542d51a0a1
|
| 3 |
+
size 1039
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
pandas
|
| 3 |
+
joblib
|
| 4 |
+
openai
|
| 5 |
+
python-dotenv
|
| 6 |
+
gradio
|
| 7 |
+
scikit-learn
|