Spaces:
Runtime error
Runtime error
| import multiprocessing | |
| import threading | |
| import time | |
| from src.vad import AbstractTranscription, TranscriptionConfig, get_audio_duration | |
| from src.whisperContainer import WhisperCallback | |
| from multiprocessing import Pool | |
| from typing import Any, Dict, List | |
| import os | |
| class ParallelContext: | |
| def __init__(self, num_processes: int = None, auto_cleanup_timeout_seconds: float = None): | |
| self.num_processes = num_processes | |
| self.auto_cleanup_timeout_seconds = auto_cleanup_timeout_seconds | |
| self.lock = threading.Lock() | |
| self.ref_count = 0 | |
| self.pool = None | |
| self.cleanup_timer = None | |
| def get_pool(self): | |
| # Initialize pool lazily | |
| if (self.pool is None): | |
| context = multiprocessing.get_context('spawn') | |
| self.pool = context.Pool(self.num_processes) | |
| self.ref_count = self.ref_count + 1 | |
| if (self.auto_cleanup_timeout_seconds is not None): | |
| self._stop_auto_cleanup() | |
| return self.pool | |
| def return_pool(self, pool): | |
| if (self.pool == pool and self.ref_count > 0): | |
| self.ref_count = self.ref_count - 1 | |
| if (self.ref_count == 0): | |
| if (self.auto_cleanup_timeout_seconds is not None): | |
| self._start_auto_cleanup() | |
| def _start_auto_cleanup(self): | |
| if (self.cleanup_timer is not None): | |
| self.cleanup_timer.cancel() | |
| self.cleanup_timer = threading.Timer(self.auto_cleanup_timeout_seconds, self._execute_cleanup) | |
| self.cleanup_timer.start() | |
| print("Started auto cleanup of pool in " + str(self.auto_cleanup_timeout_seconds) + " seconds") | |
| def _stop_auto_cleanup(self): | |
| if (self.cleanup_timer is not None): | |
| self.cleanup_timer.cancel() | |
| self.cleanup_timer = None | |
| print("Stopped auto cleanup of pool") | |
| def _execute_cleanup(self): | |
| print("Executing cleanup of pool") | |
| if (self.ref_count == 0): | |
| self.close() | |
| def close(self): | |
| self._stop_auto_cleanup() | |
| if (self.pool is not None): | |
| print("Closing pool of " + str(self.num_processes) + " processes") | |
| self.pool.close() | |
| self.pool.join() | |
| self.pool = None | |
| class ParallelTranscriptionConfig(TranscriptionConfig): | |
| def __init__(self, device_id: str, override_timestamps, initial_segment_index, copy: TranscriptionConfig = None): | |
| super().__init__(copy.non_speech_strategy, copy.segment_padding_left, copy.segment_padding_right, copy.max_silent_period, copy.max_merge_size, copy.max_prompt_window, initial_segment_index) | |
| self.device_id = device_id | |
| self.override_timestamps = override_timestamps | |
| class ParallelTranscription(AbstractTranscription): | |
| # Silero VAD typically takes about 3 seconds per minute, so there's no need to split the chunks | |
| # into smaller segments than 2 minute (min 6 seconds per CPU core) | |
| MIN_CPU_CHUNK_SIZE_SECONDS = 2 * 60 | |
| def __init__(self, sampling_rate: int = 16000): | |
| super().__init__(sampling_rate=sampling_rate) | |
| def transcribe_parallel(self, transcription: AbstractTranscription, audio: str, whisperCallable: WhisperCallback, config: TranscriptionConfig, | |
| cpu_device_count: int, gpu_devices: List[str], cpu_parallel_context: ParallelContext = None, gpu_parallel_context: ParallelContext = None): | |
| total_duration = get_audio_duration(audio) | |
| # First, get the timestamps for the original audio | |
| if (cpu_device_count > 1): | |
| merged = self._get_merged_timestamps_parallel(transcription, audio, config, total_duration, cpu_device_count, cpu_parallel_context) | |
| else: | |
| timestamp_segments = transcription.get_transcribe_timestamps(audio, config, 0, total_duration) | |
| merged = transcription.get_merged_timestamps(timestamp_segments, config, total_duration) | |
| # We must make sure the whisper model is downloaded | |
| if (len(gpu_devices) > 1): | |
| whisperCallable.model_container.ensure_downloaded() | |
| # Split into a list for each device | |
| # TODO: Split by time instead of by number of chunks | |
| merged_split = list(self._split(merged, len(gpu_devices))) | |
| # Parameters that will be passed to the transcribe function | |
| parameters = [] | |
| segment_index = config.initial_segment_index | |
| for i in range(len(gpu_devices)): | |
| # Note that device_segment_list can be empty. But we will still create a process for it, | |
| # as otherwise we run the risk of assigning the same device to multiple processes. | |
| device_segment_list = list(merged_split[i]) if i < len(merged_split) else [] | |
| device_id = gpu_devices[i] | |
| print("Device " + str(device_id) + " (index " + str(i) + ") has " + str(len(device_segment_list)) + " segments") | |
| # Create a new config with the given device ID | |
| device_config = ParallelTranscriptionConfig(device_id, device_segment_list, segment_index, config) | |
| segment_index += len(device_segment_list) | |
| parameters.append([audio, whisperCallable, device_config]); | |
| merged = { | |
| 'text': '', | |
| 'segments': [], | |
| 'language': None | |
| } | |
| created_context = False | |
| perf_start_gpu = time.perf_counter() | |
| # Spawn a separate process for each device | |
| try: | |
| if (gpu_parallel_context is None): | |
| gpu_parallel_context = ParallelContext(len(gpu_devices)) | |
| created_context = True | |
| # Get a pool of processes | |
| pool = gpu_parallel_context.get_pool() | |
| # Run the transcription in parallel | |
| results = pool.starmap(self.transcribe, parameters) | |
| for result in results: | |
| # Merge the results | |
| if (result['text'] is not None): | |
| merged['text'] += result['text'] | |
| if (result['segments'] is not None): | |
| merged['segments'].extend(result['segments']) | |
| if (result['language'] is not None): | |
| merged['language'] = result['language'] | |
| finally: | |
| # Return the pool to the context | |
| if (gpu_parallel_context is not None): | |
| gpu_parallel_context.return_pool(pool) | |
| # Always close the context if we created it | |
| if (created_context): | |
| gpu_parallel_context.close() | |
| perf_end_gpu = time.perf_counter() | |
| print("Parallel transcription took " + str(perf_end_gpu - perf_start_gpu) + " seconds") | |
| return merged | |
| def _get_merged_timestamps_parallel(self, transcription: AbstractTranscription, audio: str, config: TranscriptionConfig, total_duration: float, | |
| cpu_device_count: int, cpu_parallel_context: ParallelContext = None): | |
| parameters = [] | |
| chunk_size = max(total_duration / cpu_device_count, self.MIN_CPU_CHUNK_SIZE_SECONDS) | |
| chunk_start = 0 | |
| cpu_device_id = 0 | |
| perf_start_time = time.perf_counter() | |
| # Create chunks that will be processed on the CPU | |
| while (chunk_start < total_duration): | |
| chunk_end = min(chunk_start + chunk_size, total_duration) | |
| if (chunk_end - chunk_start < 1): | |
| # No need to process chunks that are less than 1 second | |
| break | |
| print("Parallel VAD: Executing chunk from " + str(chunk_start) + " to " + | |
| str(chunk_end) + " on CPU device " + str(cpu_device_id)) | |
| parameters.append([audio, config, chunk_start, chunk_end]); | |
| cpu_device_id += 1 | |
| chunk_start = chunk_end | |
| created_context = False | |
| # Spawn a separate process for each device | |
| try: | |
| if (cpu_parallel_context is None): | |
| cpu_parallel_context = ParallelContext(cpu_device_count) | |
| created_context = True | |
| # Get a pool of processes | |
| pool = cpu_parallel_context.get_pool() | |
| # Run the transcription in parallel. Note that transcription must be picklable. | |
| results = pool.starmap(transcription.get_transcribe_timestamps, parameters) | |
| timestamps = [] | |
| # Flatten the results | |
| for result in results: | |
| timestamps.extend(result) | |
| merged = transcription.get_merged_timestamps(timestamps, config, total_duration) | |
| perf_end_time = time.perf_counter() | |
| print("Parallel VAD processing took {} seconds".format(perf_end_time - perf_start_time)) | |
| return merged | |
| finally: | |
| # Return the pool to the context | |
| if (cpu_parallel_context is not None): | |
| cpu_parallel_context.return_pool(pool) | |
| # Always close the context if we created it | |
| if (created_context): | |
| cpu_parallel_context.close() | |
| def get_transcribe_timestamps(self, audio: str, config: ParallelTranscriptionConfig, start_time: float, duration: float): | |
| return [] | |
| def get_merged_timestamps(self, timestamps: List[Dict[str, Any]], config: ParallelTranscriptionConfig, total_duration: float): | |
| # Override timestamps that will be processed | |
| if (config.override_timestamps is not None): | |
| print("Using override timestamps of size " + str(len(config.override_timestamps))) | |
| return config.override_timestamps | |
| return super().get_merged_timestamps(timestamps, config, total_duration) | |
| def transcribe(self, audio: str, whisperCallable: WhisperCallback, config: ParallelTranscriptionConfig): | |
| # Override device ID the first time | |
| if (os.environ.get("INITIALIZED", None) is None): | |
| os.environ["INITIALIZED"] = "1" | |
| # Note that this may be None if the user didn't specify a device. In that case, Whisper will | |
| # just use the default GPU device. | |
| if (config.device_id is not None): | |
| print("Using device " + config.device_id) | |
| os.environ["CUDA_VISIBLE_DEVICES"] = config.device_id | |
| return super().transcribe(audio, whisperCallable, config) | |
| def _split(self, a, n): | |
| """Split a list into n approximately equal parts.""" | |
| k, m = divmod(len(a), n) | |
| return (a[i*k+min(i, m):(i+1)*k+min(i+1, m)] for i in range(n)) | |