Spaces:
Runtime error
Runtime error
| import multiprocessing | |
| from src.vad import AbstractTranscription, TranscriptionConfig | |
| from src.whisperContainer import WhisperCallback | |
| from multiprocessing import Pool | |
| from typing import List | |
| import os | |
| class ParallelTranscriptionConfig(TranscriptionConfig): | |
| def __init__(self, device_id: str, override_timestamps, initial_segment_index, copy: TranscriptionConfig = None): | |
| super().__init__(copy.non_speech_strategy, copy.segment_padding_left, copy.segment_padding_right, copy.max_silent_period, copy.max_merge_size, copy.max_prompt_window, initial_segment_index) | |
| self.device_id = device_id | |
| self.override_timestamps = override_timestamps | |
| class ParallelTranscription(AbstractTranscription): | |
| def __init__(self, sampling_rate: int = 16000): | |
| super().__init__(sampling_rate=sampling_rate) | |
| def transcribe_parallel(self, transcription: AbstractTranscription, audio: str, whisperCallable: WhisperCallback, config: TranscriptionConfig, devices: List[str]): | |
| # First, get the timestamps for the original audio | |
| merged = transcription.get_merged_timestamps(audio, config) | |
| # Split into a list for each device | |
| # TODO: Split by time instead of by number of chunks | |
| merged_split = self._chunks(merged, len(merged) // len(devices)) | |
| # Parameters that will be passed to the transcribe function | |
| parameters = [] | |
| segment_index = config.initial_segment_index | |
| for i in range(len(devices)): | |
| device_segment_list = merged_split[i] | |
| # Create a new config with the given device ID | |
| device_config = ParallelTranscriptionConfig(devices[i], device_segment_list, segment_index, config) | |
| segment_index += len(device_segment_list) | |
| parameters.append([audio, whisperCallable, device_config]); | |
| merged = { | |
| 'text': '', | |
| 'segments': [], | |
| 'language': None | |
| } | |
| # Spawn a separate process for each device | |
| context = multiprocessing.get_context('spawn') | |
| with context.Pool(len(devices)) as p: | |
| # Run the transcription in parallel | |
| results = p.starmap(self.transcribe, parameters) | |
| for result in results: | |
| # Merge the results | |
| if (result['text'] is not None): | |
| merged['text'] += result['text'] | |
| if (result['segments'] is not None): | |
| merged['segments'].extend(result['segments']) | |
| if (result['language'] is not None): | |
| merged['language'] = result['language'] | |
| return merged | |
| def get_transcribe_timestamps(self, audio: str, config: ParallelTranscriptionConfig): | |
| return [] | |
| def get_merged_timestamps(self, audio: str, config: ParallelTranscriptionConfig): | |
| # Override timestamps that will be processed | |
| if (config.override_timestamps is not None): | |
| print("Using override timestamps of size " + str(len(config.override_timestamps))) | |
| return config.override_timestamps | |
| return super().get_merged_timestamps(audio, config) | |
| def transcribe(self, audio: str, whisperCallable: WhisperCallback, config: ParallelTranscriptionConfig): | |
| # Override device ID | |
| if (config.device_id is not None): | |
| print("Using device " + config.device_id) | |
| os.environ["CUDA_VISIBLE_DEVICES"] = config.device_id | |
| return super().transcribe(audio, whisperCallable, config) | |
| def _chunks(self, lst, n): | |
| """Yield successive n-sized chunks from lst.""" | |
| return [lst[i:i + n] for i in range(0, len(lst), n)] | |