aabdoo234's picture
Update app.py
4498e1f verified
import gradio as gr
import cv2
import numpy as np
import pytesseract
import re
import google.generativeai as genai
from rapidfuzz.distance import Levenshtein
import os
os.system('apt-get update && apt-get install -y tesseract-ocr')
# Configure Generative AI
OPENAI_API_KEY = os.getenv("API_KEY")
genai.configure(api_key=OPENAI_API_KEY)
model = genai.GenerativeModel("gemini-1.5-flash")
# Image processing functions
def threshold_image(img, threshold_value=None):
if threshold_value is None: # Adaptive thresholding
thresholded_image = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 2)
else: # Manual thresholding
_, thresholded_image = cv2.threshold(img, threshold_value, 255, cv2.THRESH_BINARY)
return thresholded_image
def bm3d_denoising(img, sigma_psd=55):
return cv2.fastNlMeansDenoising(img, None, sigma_psd)
def remove_noise(img, kernel_size=3):
kernel = np.ones((kernel_size, kernel_size), np.float32) / (kernel_size**2)
denoised = cv2.filter2D(img, -1, kernel)
return cv2.medianBlur(denoised, 3)
def sharpen_image(img):
kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
return cv2.filter2D(img, -1, kernel)
def remove_extra_spaces_and_lines(text):
text = re.sub(r'\s+', ' ', text).strip()
text = re.sub(r'\n\s*\n', '\n\n', text)
return text
def calculate_accuracy(text1, text2):
# matcher = difflib.SequenceMatcher(None, generated_text, transcribed_text)
# return matcher.ratio()
distance = Levenshtein.distance(text1, text2)
max_length = max(len(text1), len(text2))
accuracy = (1 - (distance / max_length))
return accuracy
# Gradio app
def process_image(image, threshold_value=None, correct_transcription=None):
img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Process the image
thresholded = threshold_image(img, threshold_value)
bm3d_denoised_image = bm3d_denoising(thresholded)
denoised = remove_noise(thresholded)
sharpened_image = sharpen_image(bm3d_denoised_image)
# OCR
original_text = pytesseract.image_to_string(img)
thresholded_text = pytesseract.image_to_string(thresholded)
bm3d_denoised_text = pytesseract.image_to_string(bm3d_denoised_image)
denoised_text = pytesseract.image_to_string(denoised)
sharpened_text = pytesseract.image_to_string(sharpened_image)
# Clean up text
original_text = remove_extra_spaces_and_lines(original_text)
thresholded_text = remove_extra_spaces_and_lines(thresholded_text)
bm3d_denoised_text = remove_extra_spaces_and_lines(bm3d_denoised_text)
denoised_text = remove_extra_spaces_and_lines(denoised_text)
sharpened_text = remove_extra_spaces_and_lines(sharpened_text)
# Generative AI model response
user_prompt = user_prompt = f"""
below are the output texts of OCR on multiple image processing techniques of a faded image with text written in English, can you use all the texts to predict the original text, provide only the text.
Pre-Processing Image Text:
{original_text}
Sharpened Image Text:
{sharpened_text}
Thresholded Image Text:
{thresholded_text}
BM3D Denoised Image Text:
{bm3d_denoised_text}
Denoised Image Text:
{denoised_text}
"""
response = model.generate_content(user_prompt)
model_text = response.text
if not correct_transcription:
correct_transcription = model_text
# Accuracy metrics
if correct_transcription:
original_accuracy = calculate_accuracy(original_text, correct_transcription)
thresholded_accuracy = calculate_accuracy(thresholded_text, correct_transcription)
bm3d_denoised_accuracy = calculate_accuracy(bm3d_denoised_text, correct_transcription)
denoised_accuracy = calculate_accuracy(denoised_text, correct_transcription)
sharpened_accuracy = calculate_accuracy(sharpened_text, correct_transcription)
model_accuracy = calculate_accuracy(model_text, correct_transcription)
accuracy_metrics = f"""
Original Image Accuracy: {original_accuracy:.2%}
Thresholded Image Accuracy: {thresholded_accuracy:.2%}
BM3D Denoised Image Accuracy: {bm3d_denoised_accuracy:.2%}
Denoised Image Accuracy: {denoised_accuracy:.2%}
Sharpened Image Accuracy: {sharpened_accuracy:.2%}
Model Response Accuracy: {model_accuracy:.2%}
"""
else:
accuracy_metrics = "No correct transcription provided."
# Return results
return (
image, thresholded, bm3d_denoised_image, denoised, sharpened_image,
original_text, thresholded_text, bm3d_denoised_text, denoised_text, sharpened_text,
model_text, accuracy_metrics
)
# Interface
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("## Faded text restoration")
with gr.Row():
gr.Markdown("""
### Legend
- **Model Response**: Text generated by the Generative AI model.
- **Accuracy Metrics**: Comparison of OCR results with the provided correct transcription if provided, otherwise with the model response.
""")
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Upload Image", type="numpy")
threshold_slider = gr.Slider(label="Threshold Value", minimum=0, maximum=255, step=1, value=242)
adaptive_checkbox = gr.Checkbox(label="Use Adaptive Thresholding", value=False)
transcription_input = gr.Textbox(label="Correct Transcription (Optional)")
process_button = gr.Button("Process Image")
with gr.Column():
tabs = gr.Tabs()
with tabs:
with gr.TabItem("Original"):
original_image_display = gr.Image(label="Original Image")
original_text_display = gr.Textbox(label="Original Image Text", lines=5)
with gr.TabItem("Thresholded"):
thresholded_image_display = gr.Image(label="Thresholded Image")
thresholded_text_display = gr.Textbox(label="Thresholded Image Text", lines=5)
with gr.TabItem("BM3D Denoised"):
bm3d_denoised_image_display = gr.Image(label="BM3D Denoised Image")
bm3d_denoised_text_display = gr.Textbox(label="BM3D Denoised Image Text", lines=5)
with gr.TabItem("Denoised"):
denoised_image_display = gr.Image(label="Denoised Image")
denoised_text_display = gr.Textbox(label="Denoised Image Text", lines=5)
with gr.TabItem("Sharpened"):
sharpened_image_display = gr.Image(label="Sharpened Image")
sharpened_text_display = gr.Textbox(label="Sharpened Image Text", lines=5)
accuracy_output = gr.Textbox(label="Accuracy Metrics")
model_text_display = gr.Textbox(label="Model Response Text")
# Link button to processing function
def update_process(image, threshold_value, use_adaptive, correct_transcription):
threshold_value = None if use_adaptive else threshold_value
return process_image(image, threshold_value, correct_transcription)
process_button.click(
update_process,
inputs=[image_input, threshold_slider, adaptive_checkbox, transcription_input],
outputs=[
original_image_display, thresholded_image_display,
bm3d_denoised_image_display, denoised_image_display,
sharpened_image_display, original_text_display,
thresholded_text_display, bm3d_denoised_text_display,
denoised_text_display, sharpened_text_display,
model_text_display, accuracy_output
],
)
# Launch app
demo.launch()