Spaces:
Running
Running
import gradio as gr | |
import cv2 | |
import numpy as np | |
import pytesseract | |
import re | |
import google.generativeai as genai | |
from rapidfuzz.distance import Levenshtein | |
import os | |
os.system('apt-get update && apt-get install -y tesseract-ocr') | |
# Configure Generative AI | |
OPENAI_API_KEY = os.getenv("API_KEY") | |
genai.configure(api_key=OPENAI_API_KEY) | |
model = genai.GenerativeModel("gemini-1.5-flash") | |
# Image processing functions | |
def threshold_image(img, threshold_value=None): | |
if threshold_value is None: # Adaptive thresholding | |
thresholded_image = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, | |
cv2.THRESH_BINARY, 11, 2) | |
else: # Manual thresholding | |
_, thresholded_image = cv2.threshold(img, threshold_value, 255, cv2.THRESH_BINARY) | |
return thresholded_image | |
def bm3d_denoising(img, sigma_psd=55): | |
return cv2.fastNlMeansDenoising(img, None, sigma_psd) | |
def remove_noise(img, kernel_size=3): | |
kernel = np.ones((kernel_size, kernel_size), np.float32) / (kernel_size**2) | |
denoised = cv2.filter2D(img, -1, kernel) | |
return cv2.medianBlur(denoised, 3) | |
def sharpen_image(img): | |
kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]) | |
return cv2.filter2D(img, -1, kernel) | |
def remove_extra_spaces_and_lines(text): | |
text = re.sub(r'\s+', ' ', text).strip() | |
text = re.sub(r'\n\s*\n', '\n\n', text) | |
return text | |
def calculate_accuracy(text1, text2): | |
# matcher = difflib.SequenceMatcher(None, generated_text, transcribed_text) | |
# return matcher.ratio() | |
distance = Levenshtein.distance(text1, text2) | |
max_length = max(len(text1), len(text2)) | |
accuracy = (1 - (distance / max_length)) | |
return accuracy | |
# Gradio app | |
def process_image(image, threshold_value=None, correct_transcription=None): | |
img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
# Process the image | |
thresholded = threshold_image(img, threshold_value) | |
bm3d_denoised_image = bm3d_denoising(thresholded) | |
denoised = remove_noise(thresholded) | |
sharpened_image = sharpen_image(bm3d_denoised_image) | |
# OCR | |
original_text = pytesseract.image_to_string(img) | |
thresholded_text = pytesseract.image_to_string(thresholded) | |
bm3d_denoised_text = pytesseract.image_to_string(bm3d_denoised_image) | |
denoised_text = pytesseract.image_to_string(denoised) | |
sharpened_text = pytesseract.image_to_string(sharpened_image) | |
# Clean up text | |
original_text = remove_extra_spaces_and_lines(original_text) | |
thresholded_text = remove_extra_spaces_and_lines(thresholded_text) | |
bm3d_denoised_text = remove_extra_spaces_and_lines(bm3d_denoised_text) | |
denoised_text = remove_extra_spaces_and_lines(denoised_text) | |
sharpened_text = remove_extra_spaces_and_lines(sharpened_text) | |
# Generative AI model response | |
user_prompt = user_prompt = f""" | |
below are the output texts of OCR on multiple image processing techniques of a faded image with text written in English, can you use all the texts to predict the original text, provide only the text. | |
Pre-Processing Image Text: | |
{original_text} | |
Sharpened Image Text: | |
{sharpened_text} | |
Thresholded Image Text: | |
{thresholded_text} | |
BM3D Denoised Image Text: | |
{bm3d_denoised_text} | |
Denoised Image Text: | |
{denoised_text} | |
""" | |
response = model.generate_content(user_prompt) | |
model_text = response.text | |
if not correct_transcription: | |
correct_transcription = model_text | |
# Accuracy metrics | |
if correct_transcription: | |
original_accuracy = calculate_accuracy(original_text, correct_transcription) | |
thresholded_accuracy = calculate_accuracy(thresholded_text, correct_transcription) | |
bm3d_denoised_accuracy = calculate_accuracy(bm3d_denoised_text, correct_transcription) | |
denoised_accuracy = calculate_accuracy(denoised_text, correct_transcription) | |
sharpened_accuracy = calculate_accuracy(sharpened_text, correct_transcription) | |
model_accuracy = calculate_accuracy(model_text, correct_transcription) | |
accuracy_metrics = f""" | |
Original Image Accuracy: {original_accuracy:.2%} | |
Thresholded Image Accuracy: {thresholded_accuracy:.2%} | |
BM3D Denoised Image Accuracy: {bm3d_denoised_accuracy:.2%} | |
Denoised Image Accuracy: {denoised_accuracy:.2%} | |
Sharpened Image Accuracy: {sharpened_accuracy:.2%} | |
Model Response Accuracy: {model_accuracy:.2%} | |
""" | |
else: | |
accuracy_metrics = "No correct transcription provided." | |
# Return results | |
return ( | |
image, thresholded, bm3d_denoised_image, denoised, sharpened_image, | |
original_text, thresholded_text, bm3d_denoised_text, denoised_text, sharpened_text, | |
model_text, accuracy_metrics | |
) | |
# Interface | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.Markdown("## Faded text restoration") | |
with gr.Row(): | |
gr.Markdown(""" | |
### Legend | |
- **Model Response**: Text generated by the Generative AI model. | |
- **Accuracy Metrics**: Comparison of OCR results with the provided correct transcription if provided, otherwise with the model response. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(label="Upload Image", type="numpy") | |
threshold_slider = gr.Slider(label="Threshold Value", minimum=0, maximum=255, step=1, value=242) | |
adaptive_checkbox = gr.Checkbox(label="Use Adaptive Thresholding", value=False) | |
transcription_input = gr.Textbox(label="Correct Transcription (Optional)") | |
process_button = gr.Button("Process Image") | |
with gr.Column(): | |
tabs = gr.Tabs() | |
with tabs: | |
with gr.TabItem("Original"): | |
original_image_display = gr.Image(label="Original Image") | |
original_text_display = gr.Textbox(label="Original Image Text", lines=5) | |
with gr.TabItem("Thresholded"): | |
thresholded_image_display = gr.Image(label="Thresholded Image") | |
thresholded_text_display = gr.Textbox(label="Thresholded Image Text", lines=5) | |
with gr.TabItem("BM3D Denoised"): | |
bm3d_denoised_image_display = gr.Image(label="BM3D Denoised Image") | |
bm3d_denoised_text_display = gr.Textbox(label="BM3D Denoised Image Text", lines=5) | |
with gr.TabItem("Denoised"): | |
denoised_image_display = gr.Image(label="Denoised Image") | |
denoised_text_display = gr.Textbox(label="Denoised Image Text", lines=5) | |
with gr.TabItem("Sharpened"): | |
sharpened_image_display = gr.Image(label="Sharpened Image") | |
sharpened_text_display = gr.Textbox(label="Sharpened Image Text", lines=5) | |
accuracy_output = gr.Textbox(label="Accuracy Metrics") | |
model_text_display = gr.Textbox(label="Model Response Text") | |
# Link button to processing function | |
def update_process(image, threshold_value, use_adaptive, correct_transcription): | |
threshold_value = None if use_adaptive else threshold_value | |
return process_image(image, threshold_value, correct_transcription) | |
process_button.click( | |
update_process, | |
inputs=[image_input, threshold_slider, adaptive_checkbox, transcription_input], | |
outputs=[ | |
original_image_display, thresholded_image_display, | |
bm3d_denoised_image_display, denoised_image_display, | |
sharpened_image_display, original_text_display, | |
thresholded_text_display, bm3d_denoised_text_display, | |
denoised_text_display, sharpened_text_display, | |
model_text_display, accuracy_output | |
], | |
) | |
# Launch app | |
demo.launch() |