Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,94 +1,94 @@
|
|
| 1 |
-
from flask import Flask, request, jsonify, render_template
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
-
import torch
|
| 4 |
-
import torch.nn.functional as F
|
| 5 |
-
import re
|
| 6 |
-
from flask_cors import CORS # Enable CORS
|
| 7 |
-
|
| 8 |
-
# Initialize Flask app
|
| 9 |
-
app = Flask(__name__)
|
| 10 |
-
CORS(app) # Allow requests from frontend apps
|
| 11 |
-
|
| 12 |
-
# Choose your model: 'bert-base-uncased' or 'GroNLP/hateBERT'
|
| 13 |
-
MODEL_NAME = 'bert-base-uncased' # Change to 'GroNLP/hateBERT' if needed
|
| 14 |
-
|
| 15 |
-
# Load tokenizer and model
|
| 16 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 17 |
-
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
| 18 |
-
model.eval()
|
| 19 |
-
|
| 20 |
-
# Two-class labels only
|
| 21 |
-
LABELS = ['Safe', 'Cyberbullying']
|
| 22 |
-
|
| 23 |
-
# Offensive trigger words
|
| 24 |
-
TRIGGER_WORDS = [
|
| 25 |
-
"gago", "pokpok", "yawa", "linte", "ulol", "tangina", "bilat", "putang", "tarantado", "bobo",
|
| 26 |
-
"yudipota", "law-ay", "bilatibay", "hayop"
|
| 27 |
-
]
|
| 28 |
-
|
| 29 |
-
# Detect trigger words in input text
|
| 30 |
-
def find_triggers(text):
|
| 31 |
-
found = []
|
| 32 |
-
for word in TRIGGER_WORDS:
|
| 33 |
-
if re.search(rf"\b{re.escape(word)}\b", text, re.IGNORECASE):
|
| 34 |
-
found.append(word)
|
| 35 |
-
return found
|
| 36 |
-
|
| 37 |
-
# Predict function
|
| 38 |
-
def predict_text(text):
|
| 39 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 40 |
-
|
| 41 |
-
# Use GPU if available
|
| 42 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 43 |
-
model.to(device)
|
| 44 |
-
inputs = {key: value.to(device) for key, value in inputs.items()}
|
| 45 |
-
|
| 46 |
-
with torch.no_grad():
|
| 47 |
-
outputs = model(**inputs)
|
| 48 |
-
logits = outputs.logits
|
| 49 |
-
probs = F.softmax(logits, dim=1)
|
| 50 |
-
confidence, predicted_class = torch.max(probs, dim=1)
|
| 51 |
-
|
| 52 |
-
# Fallback logic: if model predicts more than 2 classes, default to Safe if out-of-bounds
|
| 53 |
-
label_index = predicted_class.item()
|
| 54 |
-
if label_index >= len(LABELS):
|
| 55 |
-
label_index = 0 # default to "Safe"
|
| 56 |
-
|
| 57 |
-
label = LABELS[label_index]
|
| 58 |
-
confidence_score = round(confidence.item(), 4)
|
| 59 |
-
triggers = find_triggers(text)
|
| 60 |
-
|
| 61 |
-
# Override model prediction if offensive triggers found
|
| 62 |
-
if triggers and label == "Safe":
|
| 63 |
-
label = "Cyberbullying"
|
| 64 |
-
|
| 65 |
-
return {
|
| 66 |
-
"label": label,
|
| 67 |
-
"confidence": confidence_score,
|
| 68 |
-
"triggers": triggers
|
| 69 |
-
}
|
| 70 |
-
|
| 71 |
-
# Serve frontend
|
| 72 |
-
@app.route('/')
|
| 73 |
-
def index():
|
| 74 |
-
return render_template('index.html') # Ensure templates/index.html exists
|
| 75 |
-
|
| 76 |
-
# API endpoint
|
| 77 |
-
@app.route("/predict", methods=["POST"])
|
| 78 |
-
def predict_api():
|
| 79 |
-
try:
|
| 80 |
-
data = request.get_json()
|
| 81 |
-
text = data.get("text", "")
|
| 82 |
-
|
| 83 |
-
if not text.strip():
|
| 84 |
-
return jsonify({"error": "No text provided"}), 400
|
| 85 |
-
|
| 86 |
-
result = predict_text(text)
|
| 87 |
-
return jsonify(result)
|
| 88 |
-
|
| 89 |
-
except Exception as e:
|
| 90 |
-
return jsonify({"error": str(e)}), 500
|
| 91 |
-
|
| 92 |
-
# Run server
|
| 93 |
-
if __name__ == "__main__":
|
| 94 |
-
app.run(debug=True)
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify, render_template
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import re
|
| 6 |
+
from flask_cors import CORS # Enable CORS
|
| 7 |
+
|
| 8 |
+
# Initialize Flask app
|
| 9 |
+
app = Flask(__name__)
|
| 10 |
+
CORS(app) # Allow requests from frontend apps
|
| 11 |
+
|
| 12 |
+
# Choose your model: 'bert-base-uncased' or 'GroNLP/hateBERT'
|
| 13 |
+
MODEL_NAME = 'bert-base-uncased' # Change to 'GroNLP/hateBERT' if needed
|
| 14 |
+
|
| 15 |
+
# Load tokenizer and model
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 17 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
| 18 |
+
model.eval()
|
| 19 |
+
|
| 20 |
+
# Two-class labels only
|
| 21 |
+
LABELS = ['Safe', 'Cyberbullying']
|
| 22 |
+
|
| 23 |
+
# Offensive trigger words
|
| 24 |
+
TRIGGER_WORDS = [
|
| 25 |
+
"gago", "pokpok", "yawa", "linte", "ulol", "tangina", "bilat", "putang", "tarantado", "bobo",
|
| 26 |
+
"yudipota", "law-ay", "bilatibay", "hayop"
|
| 27 |
+
]
|
| 28 |
+
|
| 29 |
+
# Detect trigger words in input text
|
| 30 |
+
def find_triggers(text):
|
| 31 |
+
found = []
|
| 32 |
+
for word in TRIGGER_WORDS:
|
| 33 |
+
if re.search(rf"\b{re.escape(word)}\b", text, re.IGNORECASE):
|
| 34 |
+
found.append(word)
|
| 35 |
+
return found
|
| 36 |
+
|
| 37 |
+
# Predict function
|
| 38 |
+
def predict_text(text):
|
| 39 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 40 |
+
|
| 41 |
+
# Use GPU if available
|
| 42 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 43 |
+
model.to(device)
|
| 44 |
+
inputs = {key: value.to(device) for key, value in inputs.items()}
|
| 45 |
+
|
| 46 |
+
with torch.no_grad():
|
| 47 |
+
outputs = model(**inputs)
|
| 48 |
+
logits = outputs.logits
|
| 49 |
+
probs = F.softmax(logits, dim=1)
|
| 50 |
+
confidence, predicted_class = torch.max(probs, dim=1)
|
| 51 |
+
|
| 52 |
+
# Fallback logic: if model predicts more than 2 classes, default to Safe if out-of-bounds
|
| 53 |
+
label_index = predicted_class.item()
|
| 54 |
+
if label_index >= len(LABELS):
|
| 55 |
+
label_index = 0 # default to "Safe"
|
| 56 |
+
|
| 57 |
+
label = LABELS[label_index]
|
| 58 |
+
confidence_score = round(confidence.item(), 4)
|
| 59 |
+
triggers = find_triggers(text)
|
| 60 |
+
|
| 61 |
+
# Override model prediction if offensive triggers found
|
| 62 |
+
if triggers and label == "Safe":
|
| 63 |
+
label = "Cyberbullying"
|
| 64 |
+
|
| 65 |
+
return {
|
| 66 |
+
"label": label,
|
| 67 |
+
"confidence": confidence_score,
|
| 68 |
+
"triggers": triggers
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
# Serve frontend
|
| 72 |
+
@app.route('/')
|
| 73 |
+
def index():
|
| 74 |
+
return render_template('index.html') # Ensure templates/index.html exists
|
| 75 |
+
|
| 76 |
+
# API endpoint
|
| 77 |
+
@app.route("/predict", methods=["POST"])
|
| 78 |
+
def predict_api():
|
| 79 |
+
try:
|
| 80 |
+
data = request.get_json()
|
| 81 |
+
text = data.get("text", "")
|
| 82 |
+
|
| 83 |
+
if not text.strip():
|
| 84 |
+
return jsonify({"error": "No text provided"}), 400
|
| 85 |
+
|
| 86 |
+
result = predict_text(text)
|
| 87 |
+
return jsonify(result)
|
| 88 |
+
|
| 89 |
+
except Exception as e:
|
| 90 |
+
return jsonify({"error": str(e)}), 500
|
| 91 |
+
|
| 92 |
+
# Run server
|
| 93 |
+
#if __name__ == "__main__":
|
| 94 |
+
# app.run(debug=True)
|