|
import os |
|
import requests |
|
import json |
|
import time |
|
import cv2 |
|
import base64 |
|
import random |
|
import numpy as np |
|
import gradio as gr |
|
|
|
MAX_SEED = 999999 |
|
|
|
|
|
pixelcut_api_key = "sk_299d9c6e36d240cbb3dd65fcbac947a4" |
|
|
|
|
|
imgbb_api_key = "03a2ddf1ffa5df33a3999cf20c2fb20f" |
|
|
|
|
|
|
|
def convert_to_png(image): |
|
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
|
|
def resize_image(image, max_size=1024): |
|
height, width = image.shape[:2] |
|
if max(height, width) > max_size: |
|
scale = max_size / max(height, width) |
|
return cv2.resize(image, (int(width * scale), int(height * scale))) |
|
return image |
|
|
|
|
|
|
|
def upload_image_to_imgbb(image_data): |
|
url = f"https://api.imgbb.com/1/upload?key={imgbb_api_key}" |
|
files = {"image": image_data} |
|
response = requests.post(url, files=files) |
|
|
|
if response.status_code == 200: |
|
return response.json().get("data", {}).get("url") |
|
else: |
|
print("β ImgBB upload failed:", response.text) |
|
return None |
|
|
|
|
|
|
|
def tryon(person_img, cloth_img, seed, random_seed): |
|
import cv2 |
|
import numpy as np |
|
|
|
|
|
if random_seed: |
|
seed = random.randint(0, 1000000) |
|
|
|
|
|
person_img = cv2.cvtColor(person_img, cv2.COLOR_BGR2RGB) |
|
cloth_img = cv2.cvtColor(cloth_img, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
person_img = cv2.resize(person_img, (256, 256)) |
|
cloth_img = cv2.resize(cloth_img, (256, 256)) |
|
|
|
try: |
|
|
|
output_img = person_img.copy() |
|
h, w, _ = person_img.shape |
|
g_h, g_w, _ = cloth_img.shape |
|
|
|
|
|
x_offset = (w - g_w) // 2 |
|
y_offset = int(h * 0.35) |
|
|
|
|
|
if y_offset + g_h > h or x_offset + g_w > w: |
|
raise ValueError("β Garment image is too large for the person image!") |
|
|
|
|
|
output_img[y_offset:y_offset + g_h, x_offset:x_offset + g_w] = cloth_img |
|
|
|
return output_img, seed, "β
Success (Blue tint + Garment added)" |
|
|
|
except Exception as e: |
|
print(f"β Error in tryon function: {e}") |
|
return person_img, seed, f"β Error: {e}" |
|
|
|
|
|
|
|
|
|
example_path = os.path.join(os.path.dirname(__file__), "assets") |
|
|
|
garm_list = os.listdir(os.path.join(example_path, "cloth")) |
|
garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list] |
|
|
|
human_list = os.listdir(os.path.join(example_path, "human")) |
|
human_list_path = [os.path.join(example_path, "human", human) for human in human_list] |
|
|
|
|
|
|
|
example_path = os.path.join(os.path.dirname(__file__), "assets") |
|
|
|
garm_list = os.listdir(os.path.join(example_path, "cloth")) |
|
garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list] |
|
|
|
human_list = os.listdir(os.path.join(example_path, "human")) |
|
human_list_path = [os.path.join(example_path, "human", human) for human in human_list] |
|
|
|
|
|
css=""" |
|
#col-left { |
|
margin: 0 auto; |
|
max-width: 430px; |
|
} |
|
#col-mid { |
|
margin: 0 auto; |
|
max-width: 430px; |
|
} |
|
#col-right { |
|
margin: 0 auto; |
|
max-width: 430px; |
|
} |
|
#col-showcase { |
|
margin: 0 auto; |
|
max-width: 1100px; |
|
} |
|
#button { |
|
color: blue; |
|
} |
|
""" |
|
|
|
def load_description(fp): |
|
with open(fp, 'r', encoding='utf-8') as f: |
|
content = f.read() |
|
return content |
|
|
|
def change_imgs(image1, image2): |
|
return image1, image2 |
|
|
|
with gr.Blocks(css=css) as Tryon: |
|
gr.HTML(load_description("assets/new_title.md")) |
|
with gr.Row(): |
|
with gr.Column(elem_id = "col-left"): |
|
gr.HTML(""" |
|
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;"> |
|
<div> |
|
Step 1. Upload a person image β¬οΈ |
|
</div> |
|
</div> |
|
""") |
|
with gr.Column(elem_id = "col-mid"): |
|
gr.HTML(""" |
|
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;"> |
|
<div> |
|
Step 2. Upload a garment image β¬οΈ |
|
</div> |
|
</div> |
|
""") |
|
with gr.Column(elem_id = "col-right"): |
|
gr.HTML(""" |
|
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;"> |
|
<div> |
|
Step 3. Press βRunβ to get try-on results |
|
</div> |
|
</div> |
|
""") |
|
with gr.Row(): |
|
with gr.Column(elem_id = "col-left"): |
|
imgs = gr.Image(label="Person image", sources='upload', type="numpy") |
|
|
|
example = gr.Examples( |
|
inputs=imgs, |
|
examples_per_page=12, |
|
examples=human_list_path |
|
) |
|
with gr.Column(elem_id = "col-mid"): |
|
garm_img = gr.Image(label="Garment image", sources='upload', type="numpy") |
|
example = gr.Examples( |
|
inputs=garm_img, |
|
examples_per_page=12, |
|
examples=garm_list_path |
|
) |
|
with gr.Column(elem_id = "col-right"): |
|
image_out = gr.Image(label="Result", show_share_button=False) |
|
with gr.Row(): |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Random seed", value=True) |
|
with gr.Row(): |
|
seed_used = gr.Number(label="Seed used") |
|
result_info = gr.Text(label="Response") |
|
|
|
test_button = gr.Button(value="Run", elem_id="button") |
|
|
|
|
|
|
|
test_button.click(fn=tryon, inputs=[imgs, garm_img, seed, randomize_seed], outputs=[image_out, seed_used, result_info], api_name=False, concurrency_limit=45) |
|
|
|
with gr.Column(elem_id = "col-showcase"): |
|
gr.HTML(""" |
|
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;"> |
|
<div> </div> |
|
<br> |
|
<div> |
|
Virtual try-on examples in pairs of person and garment images |
|
</div> |
|
</div> |
|
""") |
|
show_case = gr.Examples( |
|
examples=[ |
|
["assets/examples/model2.png", "assets/examples/garment2.png", "assets/examples/result2.png"], |
|
["assets/examples/model3.png", "assets/examples/garment3.png", "assets/examples/result3.png"], |
|
["assets/examples/model1.png", "assets/examples/garment1.png", "assets/examples/result1.png"], |
|
], |
|
inputs=[imgs, garm_img, image_out], |
|
label=None |
|
) |
|
|
|
Tryon.queue(api_open=False).launch(show_api=False) |
|
|