File size: 6,736 Bytes
90f5950
a0c0959
 
9b05d2a
 
bca9ec2
9b05d2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80c7355
9b05d2a
 
f505007
7152ff6
9b05d2a
 
 
 
 
90f5950
9b05d2a
 
 
 
 
c24d322
9b05d2a
 
 
 
 
 
 
 
 
c24d322
9b05d2a
c24d322
9b05d2a
 
 
 
 
c24d322
9b05d2a
90f5950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a17a9fc
90f5950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import requests
import gradio as gr

# Set your Pixelcut API key directly
API_KEY = "sk_7c19e4f2ad434a3ebc70fdd85ade5309"

# Function to remove background from a local image file
def remove_bg(image_path):
    try:
        with open(image_path, "rb") as image_file:
            response = requests.post(
                "https://api.developer.pixelcut.ai/v1/remove-background",
                headers={
                    "Accept": "application/json",
                    "X-API-KEY": API_KEY,
                },
                files={"image": image_file},
                data={"format": "png"},
            )

        # Handle API response
        if response.status_code == 200:
            result = response.json()
            return result["output_url"]  # Return the output image URL from API
        else:
            return f"Error: {response.status_code} - {response.json()['error']}"

    except Exception as e:
        return f"Exception: {e}"


# Define the Tryonn function without CSS
def tryonn(person_image, garment_image):
    # Process the images using the Pixelcut API
    person_result = remove_bg(person_image)
    garment_result = remove_bg(garment_image)

    # If both images are processed successfully, combine them (mock-up display)
    if "Error" not in person_result and "Error" not in garment_result:
        return person_result, garment_result, "✅ Success!"
    else:
        return person_result, garment_result, "❌ Failed, check errors."

# Gradio interface setup (CSS removed)
with gr.Blocks() as Tryon:
    gr.Markdown("## Upload a Person Image and Garment Image")
    with gr.Row():
        person_input = gr.Image(type="filepath", label="Person Image")
        garment_input = gr.Image(type="filepath", label="Garment Image")
    output_person = gr.Image(label="Processed Person Image")
    output_garment = gr.Image(label="Processed Garment Image")
    status = gr.Textbox(label="Status")

    submit_button = gr.Button("Run Try-On")

    submit_button.click(
        fn=tryonn,
        inputs=[person_input, garment_input],
        outputs=[output_person, output_garment, status],
    )

Tryon.launch()


example_path = os.path.join(os.path.dirname(__file__), 'assets')

garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]

human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]

css="""
#col-left {
    margin: 0 auto;
    max-width: 430px;
}
#col-mid {
    margin: 0 auto;
    max-width: 430px;
}
#col-right {
    margin: 0 auto;
    max-width: 430px;
}
#col-showcase {
    margin: 0 auto;
    max-width: 1100px;
}
#button {
    color: blue;
}
"""

def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content

def change_imgs(image1, image2):
    return image1, image2

with gr.Blocks(css=css) as Tryon:
    gr.HTML(load_description("assets/new_title.md"))
    with gr.Row():
        with gr.Column(elem_id = "col-left"):
            gr.HTML("""
            <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
                <div>
                Step 1.  Upload a person image ⬇️
                </div>
            </div>
            """)
        with gr.Column(elem_id = "col-mid"):
            gr.HTML("""
            <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
                <div>
                Step 2. Upload a garment image ⬇️
                </div>
            </div>
            """)
        with gr.Column(elem_id = "col-right"):
            gr.HTML("""
            <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
                <div>
                Step 3. Press “Run” to get try-on results
                </div>
            </div>
            """)
    with gr.Row():
        with gr.Column(elem_id = "col-left"):
            imgs = gr.Image(label="Person image", sources='upload', type="numpy")
            # category = gr.Dropdown(label="Garment category", choices=['upper_body', 'lower_body', 'dresses'],  value="upper_body")
            example = gr.Examples(
                inputs=imgs,
                examples_per_page=12,
                examples=human_list_path
            )
        with gr.Column(elem_id = "col-mid"):
            garm_img = gr.Image(label="Garment image", sources='upload', type="numpy")
            example = gr.Examples(
                inputs=garm_img,
                examples_per_page=12,
                examples=garm_list_path
            )
        with gr.Column(elem_id = "col-right"):
            image_out = gr.Image(label="Result", show_share_button=False)
            with gr.Row():
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Random seed", value=True)
            with gr.Row():
                seed_used = gr.Number(label="Seed used")
                result_info = gr.Text(label="Response")
            # try_button = gr.Button(value="Run", elem_id="button")
            test_button = gr.Button(value="Run", elem_id="button")


    # try_button.click(fn=start_tryon, inputs=[imgs, garm_img, seed, randomize_seed], outputs=[image_out, seed_used, result_info], api_name='tryon',concurrency_limit=10)
    test_button.click(fn=tryon, inputs=[imgs, garm_img, seed, randomize_seed], outputs=[image_out, seed_used, result_info], api_name=False, concurrency_limit=45)

    with gr.Column(elem_id = "col-showcase"):
        gr.HTML("""
        <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
            <div> </div>
            <br>
            <div>
            Virtual try-on examples in pairs of person and garment images
            </div>
        </div>
        """)
        show_case = gr.Examples(
            examples=[
                ["assets/examples/model2.png", "assets/examples/garment2.png", "assets/examples/result2.png"],
                ["assets/examples/model3.png", "assets/examples/garment3.png", "assets/examples/result3.png"],
                ["assets/examples/model1.png", "assets/examples/garment1.png", "assets/examples/result1.png"],
            ],
            inputs=[imgs, garm_img, image_out],
            label=None
        )

Tryon.queue(api_open=False).launch(show_api=False)