File size: 8,026 Bytes
5d7df65
90f5950
5d7df65
 
 
f7221f1
5d7df65
 
 
a0c0959
5d7df65
c24d322
593aefc
be80e65
593aefc
 
8ea6dc9
90f5950
44d63f3
 
92dcd08
44d63f3
 
813e34f
686b24a
 
 
 
 
 
 
 
44d63f3
686b24a
593aefc
 
686b24a
593aefc
 
 
 
668f50f
593aefc
668f50f
5d7df65
44d63f3
 
813e34f
 
 
66e14ec
44d63f3
813e34f
 
5d7df65
2f48c46
 
 
 
5d7df65
2f48c46
 
a1232f9
2f48c46
 
 
 
 
d68599b
 
44d63f3
2f48c46
d68599b
 
44d63f3
2f48c46
d68599b
 
0d53021
2f48c46
 
 
 
 
 
 
 
 
44d63f3
2f48c46
90f5950
0d53021
 
 
 
 
92dcd08
2f48c46
92dcd08
 
 
 
 
90f5950
92dcd08
 
90f5950
44d63f3
fd0a2c1
 
 
 
 
 
 
 
 
 
90f5950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a17a9fc
90f5950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import requests
import json
import time
import cv2
import base64
import random
import numpy as np
import gradio as gr

MAX_SEED = 999999

# βœ… Pixelcut API Key
pixelcut_api_key = "sk_299d9c6e36d240cbb3dd65fcbac947a4"

# βœ… ImgBB API Key (for uploading images to get valid URLs)
imgbb_api_key = "03a2ddf1ffa5df33a3999cf20c2fb20f"


# 🎯 Convert image to PNG format (keeps the blue tint glitch!)
def convert_to_png(image):
    return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)


# πŸ”₯ Resize large images to prevent upload failures (ImgBB limit: 32MB)
def resize_image(image, max_size=1024):
    height, width = image.shape[:2]
    if max(height, width) > max_size:
        scale = max_size / max(height, width)
        return cv2.resize(image, (int(width * scale), int(height * scale)))
    return image


# πŸ› οΈ Upload images to ImgBB (fixed payload!)
def upload_image_to_imgbb(image_data):
    url = f"https://api.imgbb.com/1/upload?key={imgbb_api_key}"
    files = {"image": image_data}
    response = requests.post(url, files=files)

    if response.status_code == 200:
        return response.json().get("data", {}).get("url")
    else:
        print("❌ ImgBB upload failed:", response.text)
        return None


# πŸš€ Main try-on function (with blue tint + garment overlay)
def tryon(person_img, cloth_img, seed, random_seed):
    import cv2
    import numpy as np

    # 🎲 Handle seed
    if random_seed:
        seed = random.randint(0, 1000000)

    try:
        # βœ… Convert images to RGB (fixing blue tint)
        person_img = cv2.cvtColor(person_img, cv2.COLOR_BGR2RGB)
        cloth_img = cv2.cvtColor(cloth_img, cv2.COLOR_BGR2RGB)

        # βœ‚οΈ Resize both images to 256x256 (keep consistent sizes)
        person_img = cv2.resize(person_img, (256, 256))

        # βœ… Resize garment to fit person size
        g_h, g_w = person_img.shape[:2]
        cloth_img = cv2.resize(cloth_img, (g_w, g_h))

        # πŸ”₯ Blend garment onto person (centered overlay)
        output_img = person_img.copy()
        h, w, _ = person_img.shape

        # Center garment on the torso (adjust the offset if needed)
        x_offset = (w - g_w) // 2
        y_offset = int(h * 0.35)

        # βœ… Ensure garment fits the person image
        if y_offset + g_h > h or x_offset + g_w > w:
            raise ValueError("❗ Garment image is too large for the person image!")

        # πŸ› οΈ Overlay garment on the person (with transparency support)
        alpha = 0.7  # Adjust transparency level (0 = invisible, 1 = solid)
        output_img[y_offset:y_offset + g_h, x_offset:x_offset + g_w] = cv2.addWeighted(
            person_img[y_offset:y_offset + g_h, x_offset:x_offset + g_w],
            1 - alpha,
            cloth_img,
            alpha,
            0
        )

        return output_img, seed, "βœ… Success (Blue tint removed + Garment added)"

    except Exception as e:
        print(f"❌ Error in tryon function: {e}")
        return person_img, seed, f"❌ Error: {e}"




# πŸ”§ Paths for examples
example_path = os.path.join(os.path.dirname(__file__), "assets")

garm_list = os.listdir(os.path.join(example_path, "cloth"))
garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list]

human_list = os.listdir(os.path.join(example_path, "human"))
human_list_path = [os.path.join(example_path, "human", human) for human in human_list]


# πŸ”§ Paths for examples
example_path = os.path.join(os.path.dirname(__file__), "assets")

garm_list = os.listdir(os.path.join(example_path, "cloth"))
garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list]

human_list = os.listdir(os.path.join(example_path, "human"))
human_list_path = [os.path.join(example_path, "human", human) for human in human_list]


css="""
#col-left {
    margin: 0 auto;
    max-width: 430px;
}
#col-mid {
    margin: 0 auto;
    max-width: 430px;
}
#col-right {
    margin: 0 auto;
    max-width: 430px;
}
#col-showcase {
    margin: 0 auto;
    max-width: 1100px;
}
#button {
    color: blue;
}
"""

def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content

def change_imgs(image1, image2):
    return image1, image2

with gr.Blocks(css=css) as Tryon:
    gr.HTML(load_description("assets/new_title.md"))
    with gr.Row():
        with gr.Column(elem_id = "col-left"):
            gr.HTML("""
            <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
                <div>
                Step 1.  Upload a person image ⬇️
                </div>
            </div>
            """)
        with gr.Column(elem_id = "col-mid"):
            gr.HTML("""
            <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
                <div>
                Step 2. Upload a garment image ⬇️
                </div>
            </div>
            """)
        with gr.Column(elem_id = "col-right"):
            gr.HTML("""
            <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
                <div>
                Step 3. Press β€œRun” to get try-on results
                </div>
            </div>
            """)
    with gr.Row():
        with gr.Column(elem_id = "col-left"):
            imgs = gr.Image(label="Person image", sources='upload', type="numpy")
            # category = gr.Dropdown(label="Garment category", choices=['upper_body', 'lower_body', 'dresses'],  value="upper_body")
            example = gr.Examples(
                inputs=imgs,
                examples_per_page=12,
                examples=human_list_path
            )
        with gr.Column(elem_id = "col-mid"):
            garm_img = gr.Image(label="Garment image", sources='upload', type="numpy")
            example = gr.Examples(
                inputs=garm_img,
                examples_per_page=12,
                examples=garm_list_path
            )
        with gr.Column(elem_id = "col-right"):
            image_out = gr.Image(label="Result", show_share_button=False)
            with gr.Row():
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Random seed", value=True)
            with gr.Row():
                seed_used = gr.Number(label="Seed used")
                result_info = gr.Text(label="Response")
            # try_button = gr.Button(value="Run", elem_id="button")
            test_button = gr.Button(value="Run", elem_id="button")


    # try_button.click(fn=start_tryon, inputs=[imgs, garm_img, seed, randomize_seed], outputs=[image_out, seed_used, result_info], api_name='tryon',concurrency_limit=10)
    test_button.click(fn=tryon, inputs=[imgs, garm_img, seed, randomize_seed], outputs=[image_out, seed_used, result_info], api_name=False, concurrency_limit=45)

    with gr.Column(elem_id = "col-showcase"):
        gr.HTML("""
        <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
            <div> </div>
            <br>
            <div>
            Virtual try-on examples in pairs of person and garment images
            </div>
        </div>
        """)
        show_case = gr.Examples(
            examples=[
                ["assets/examples/model2.png", "assets/examples/garment2.png", "assets/examples/result2.png"],
                ["assets/examples/model3.png", "assets/examples/garment3.png", "assets/examples/result3.png"],
                ["assets/examples/model1.png", "assets/examples/garment1.png", "assets/examples/result1.png"],
            ],
            inputs=[imgs, garm_img, image_out],
            label=None
        )

Tryon.queue(api_open=False).launch(show_api=False)