|
from transformers import pipeline, set_seed |
|
import gradio as grad |
|
import random |
|
|
|
|
|
gpt2_pipe = pipeline('text-generation', model='succinctly/text2image-prompt-generator') |
|
|
|
|
|
def generate(starting_text): |
|
seed = random.randint(1, 10000000) |
|
set_seed(seed) |
|
response= gpt2_pipe(starting_text, max_length=20, num_return_sequences=5) |
|
return response[1] |
|
|
|
txt=grad.Textbox(lines=1, label="English", placeholder="English Text here") |
|
out=grad.Textbox(lines=1, label="Generated Text") |
|
|
|
grad.Interface(fn=generate, inputs=txt, outputs=out, |
|
allow_flagging='never', |
|
cache_examples=False, |
|
theme="default").launch(enable_queue=True, debug=True) |