ZoniaChatbot commited on
Commit
40e8df4
·
verified ·
1 Parent(s): 7284905

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -222
app.py DELETED
@@ -1,222 +0,0 @@
1
- import torch
2
-
3
- from transformers import pipeline
4
-
5
- import numpy as np
6
- import gradio as gr
7
-
8
- def _grab_best_device(use_gpu=True):
9
- if torch.cuda.device_count() > 0 and use_gpu:
10
- device = 0 #"cuda"
11
- else:
12
- device = -1 #"cpu"
13
- #device = 0 if torch.cuda.is_available() else -1
14
-
15
- return device
16
-
17
- device = _grab_best_device()
18
-
19
- default_model_per_language = {
20
- "spanish": "facebook/mms-tts-spa",
21
- "tamil": "facebook/mms-tts-tam",
22
- "gujarati": "facebook/mms-tts-guj",
23
- "marathi": "facebook/mms-tts-mar",
24
- #"english": "kakao-enterprise/vits-ljs",
25
- "english": "facebook/mms-tts-eng",
26
- }
27
-
28
- models_per_language = {
29
- "english": [
30
- "ylacombe/vits_ljs_midlands_male_monospeaker",
31
- ],
32
- "spanish-ch": [
33
- "ylacombe/mms-spa-finetuned-chilean-monospeaker",
34
- ],
35
- "spanish-co": [
36
- "ylacombe/mms-spa-finetuned-colombian-monospeaker",
37
- ],
38
- "tamil": [
39
- "ylacombe/mms-tam-finetuned-monospeaker",
40
- ],
41
- "gujarati" : ["ylacombe/mms-guj-finetuned-monospeaker"],
42
- "marathi": ["ylacombe/mms-mar-finetuned-monospeaker"]
43
- }
44
-
45
- HUB_PATH = "ylacombe/vits_ljs_midlands_male_monospeaker"
46
-
47
-
48
- pipe_dict = {
49
- "current_model": "ylacombe/vits_ljs_midlands_male_monospeaker",
50
- "pipe": pipeline("text-to-speech", model=HUB_PATH, device=device),
51
- "original_pipe": pipeline("text-to-speech", model=default_model_per_language["english"], device=device),
52
- "language": "english",
53
- }
54
-
55
- title = """
56
- # Explore MMS finetuning
57
- ## Or how to access truely multilingual TTS
58
-
59
- Massively Multilingual Speech (MMS) models are light-weight, low-latency TTS models based on the [VITS architecture](https://huggingface.co/docs/transformers/model_doc/vits).
60
-
61
- Meta's [MMS](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html),
62
- and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts).
63
-
64
- Coupled with the right data and the right training recipe, you can get an excellent finetuned version of every MMS checkpoints in **20 minutes** with as little as **80 to 150 samples**.
65
-
66
- Training recipe available in this [github repository](https://github.com/ylacombe/finetune-hf-vits)!
67
- """
68
-
69
- max_speakers = 15
70
-
71
-
72
- # Inference
73
- def generate_audio(text, model_id, language):
74
-
75
- if pipe_dict["language"] != language:
76
- gr.Warning(f"Language has changed - loading new default model: {default_model_per_language[language]}")
77
- pipe_dict["language"] = language
78
- pipe_dict["original_pipe"] = pipeline("text-to-speech", model=default_model_per_language[language], device=device)
79
-
80
- if pipe_dict["current_model"] != model_id:
81
- gr.Warning("Model has changed - loading new model")
82
- pipe_dict["pipe"] = pipeline("text-to-speech", model=model_id, device=device)
83
- pipe_dict["current_model"] = model_id
84
-
85
- num_speakers = pipe_dict["pipe"].model.config.num_speakers
86
-
87
- out = []
88
- # first generate original model result
89
- output = pipe_dict["original_pipe"](text)
90
- output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Non finetuned model prediction {default_model_per_language[language]}", show_label=True,
91
- visible=True)
92
- out.append(output)
93
-
94
-
95
- if num_speakers>1:
96
- for i in range(min(num_speakers, max_speakers - 1)):
97
- forward_params = {"speaker_id": i}
98
- output = pipe_dict["pipe"](text, forward_params=forward_params)
99
-
100
- output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True,
101
- visible=True)
102
- out.append(output)
103
- out.extend([gr.Audio(visible=False)]*(max_speakers-num_speakers))
104
- else:
105
- output = pipe_dict["pipe"](text)
106
- output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label="Generated Audio - Mono speaker", show_label=True,
107
- visible=True)
108
- out.append(output)
109
- out.extend([gr.Audio(visible=False)]*(max_speakers-2))
110
- return out
111
-
112
-
113
- css = """
114
- #container{
115
- margin: 0 auto;
116
- max-width: 80rem;
117
- }
118
- #intro{
119
- max-width: 100%;
120
- text-align: center;
121
- margin: 0 auto;
122
- }
123
- """
124
- # Gradio blocks demo
125
- with gr.Blocks(css=css) as demo_blocks:
126
- gr.Markdown(title, elem_id="intro")
127
-
128
- with gr.Row():
129
- with gr.Column():
130
- inp_text = gr.Textbox(label="Input Text", info="What sentence would you like to synthesise?")
131
- btn = gr.Button("Generate Audio!")
132
- language = gr.Dropdown(
133
- default_model_per_language.keys(),
134
- value = "spanish",
135
- label = "language",
136
- info = "Language that you want to test"
137
- )
138
-
139
- model_id = gr.Dropdown(
140
- models_per_language["spanish"],
141
- value="ylacombe/mms-spa-finetuned-colombian-monospeaker",
142
- label="Model",
143
- info="Model you want to test",
144
- )
145
-
146
- with gr.Column():
147
- outputs = []
148
- for i in range(max_speakers):
149
- out_audio = gr.Audio(type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, visible=False)
150
- outputs.append(out_audio)
151
-
152
- with gr.Accordion("Datasets and models details", open=False):
153
- gr.Markdown("""
154
-
155
- For each language, we used 100 to 150 samples of a single speaker to finetune the model.
156
-
157
- ### Spanish
158
-
159
- * **Model**: [Spanish MMS TTS](https://huggingface.co/facebook/mms-tts-spa).
160
- * **Datasets**:
161
- - [Chilean Spanish TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-spanish).
162
-
163
- ### Tamil
164
-
165
- * **Model**: [Tamil MMS TTS](https://huggingface.co/facebook/mms-tts-tam).
166
- * **Datasets**:
167
- - [Tamil TTS dataset](https://huggingface.co/datasets/ylacombe/google-tamil).
168
-
169
- ### Gujarati
170
-
171
- * **Model**: [Gujarati MMS TTS](https://huggingface.co/facebook/mms-tts-guj).
172
- * **Datasets**:
173
- - [Gujarati TTS dataset](https://huggingface.co/datasets/ylacombe/google-gujarati).
174
-
175
- ### Marathi
176
-
177
- * **Model**: [Marathi MMS TTS](https://huggingface.co/facebook/mms-tts-mar).
178
- * **Datasets**:
179
- - [Marathi TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-marathi).
180
-
181
- ### English
182
-
183
- * **Model**: [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs)
184
- * **Dataset**: [British Isles Accent](https://huggingface.co/datasets/ylacombe/english_dialects). For each accent, we used 100 to 150 samples of a single speaker to finetune [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs).
185
-
186
-
187
- """)
188
-
189
- with gr.Accordion("Run VITS and MMS with transformers", open=False):
190
- gr.Markdown(
191
- """
192
- ```bash
193
- pip install transformers
194
- ```
195
- ```py
196
- from transformers import pipeline
197
- import scipy
198
- pipe = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs", device=0)
199
-
200
- results = pipe("A cinematic shot of a baby racoon wearing an intricate italian priest robe")
201
-
202
- # write to a wav file
203
- scipy.io.wavfile.write("audio_vits.wav", rate=results["sampling_rate"], data=results["audio"].squeeze())
204
- ```
205
- """
206
- )
207
-
208
-
209
- language.change(lambda language: gr.Dropdown(
210
- models_per_language[language],
211
- value=models_per_language[language][0],
212
- label="Model",
213
- info="Model you want to test",
214
- ),
215
- language,
216
- model_id
217
- )
218
-
219
- btn.click(generate_audio, [inp_text, model_id, language], outputs)
220
-
221
-
222
- demo_blocks.queue().launch()