Spaces:
Running
on
Zero
Running
on
Zero
ZeroGPU and ImageSlider
Browse files- app.py +12 -10
- config.py +3 -1
- requirements.txt +1 -2
app.py
CHANGED
|
@@ -6,6 +6,10 @@ from PIL import Image
|
|
| 6 |
import torch
|
| 7 |
from torchvision import transforms
|
| 8 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
from models.baseline import BiRefNet
|
| 11 |
from config import Config
|
|
@@ -35,20 +39,22 @@ class ImagePreprocessor():
|
|
| 35 |
return image
|
| 36 |
|
| 37 |
|
| 38 |
-
model = BiRefNet(bb_pretrained=False)
|
| 39 |
state_dict = './BiRefNet_ep580.pth'
|
| 40 |
if os.path.exists(state_dict):
|
| 41 |
-
birefnet_dict = torch.load(state_dict, map_location=
|
| 42 |
unwanted_prefix = '_orig_mod.'
|
| 43 |
for k, v in list(birefnet_dict.items()):
|
| 44 |
if k.startswith(unwanted_prefix):
|
| 45 |
birefnet_dict[k[len(unwanted_prefix):]] = birefnet_dict.pop(k)
|
| 46 |
model.load_state_dict(birefnet_dict)
|
|
|
|
| 47 |
model.eval()
|
| 48 |
|
| 49 |
|
| 50 |
# def predict(image_1, image_2):
|
| 51 |
# images = [image_1, image_2]
|
|
|
|
| 52 |
def predict(image, resolution='1024x1024'):
|
| 53 |
# Image is a RGB numpy array.
|
| 54 |
resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')]
|
|
@@ -74,17 +80,13 @@ def predict(image, resolution='1024x1024'):
|
|
| 74 |
image_preds.append(
|
| 75 |
cv2.cvtColor((pred*255).astype(np.uint8), cv2.COLOR_GRAY2RGB)
|
| 76 |
)
|
| 77 |
-
return image_preds[:] if len(images) > 1 else image_preds[0]
|
| 78 |
|
|
|
|
| 79 |
|
| 80 |
-
examples = [[_] for _ in glob('materials/examples/*')][:]
|
| 81 |
|
| 82 |
-
|
| 83 |
-
ipt = [gr.Image() for _ in range(N)]
|
| 84 |
-
opt = [gr.Image() for _ in range(N)]
|
| 85 |
|
| 86 |
# Add the option of resolution in a text box.
|
| 87 |
-
ipt += [gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `512x512`. Higher resolutions can be much slower for inference.", label="Resolution")]
|
| 88 |
for idx_example, example in enumerate(examples):
|
| 89 |
examples[idx_example].append('1024x1024')
|
| 90 |
examples.append(examples[-1].copy())
|
|
@@ -92,8 +94,8 @@ examples[-1][1] = '512x512'
|
|
| 92 |
|
| 93 |
demo = gr.Interface(
|
| 94 |
fn=predict,
|
| 95 |
-
inputs=
|
| 96 |
-
outputs=
|
| 97 |
examples=examples,
|
| 98 |
title='Online demo for `Bilateral Reference for High-Resolution Dichotomous Image Segmentation`',
|
| 99 |
description=('Upload a picture, our model will give you the binary maps of the highly accurate segmentation of the salient objects in it. :)'
|
|
|
|
| 6 |
import torch
|
| 7 |
from torchvision import transforms
|
| 8 |
import gradio as gr
|
| 9 |
+
import spaces
|
| 10 |
+
from gradio_imageslider import ImageSlider
|
| 11 |
+
|
| 12 |
+
torch.jit.script = lambda f: f
|
| 13 |
|
| 14 |
from models.baseline import BiRefNet
|
| 15 |
from config import Config
|
|
|
|
| 39 |
return image
|
| 40 |
|
| 41 |
|
| 42 |
+
model = BiRefNet(bb_pretrained=False)
|
| 43 |
state_dict = './BiRefNet_ep580.pth'
|
| 44 |
if os.path.exists(state_dict):
|
| 45 |
+
birefnet_dict = torch.load(state_dict, map_location="cpu")
|
| 46 |
unwanted_prefix = '_orig_mod.'
|
| 47 |
for k, v in list(birefnet_dict.items()):
|
| 48 |
if k.startswith(unwanted_prefix):
|
| 49 |
birefnet_dict[k[len(unwanted_prefix):]] = birefnet_dict.pop(k)
|
| 50 |
model.load_state_dict(birefnet_dict)
|
| 51 |
+
model = model.to(device)
|
| 52 |
model.eval()
|
| 53 |
|
| 54 |
|
| 55 |
# def predict(image_1, image_2):
|
| 56 |
# images = [image_1, image_2]
|
| 57 |
+
@spaces.GPU
|
| 58 |
def predict(image, resolution='1024x1024'):
|
| 59 |
# Image is a RGB numpy array.
|
| 60 |
resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')]
|
|
|
|
| 80 |
image_preds.append(
|
| 81 |
cv2.cvtColor((pred*255).astype(np.uint8), cv2.COLOR_GRAY2RGB)
|
| 82 |
)
|
|
|
|
| 83 |
|
| 84 |
+
return image, image_preds[0]
|
| 85 |
|
|
|
|
| 86 |
|
| 87 |
+
examples = [[_] for _ in glob('materials/examples/*')][:]
|
|
|
|
|
|
|
| 88 |
|
| 89 |
# Add the option of resolution in a text box.
|
|
|
|
| 90 |
for idx_example, example in enumerate(examples):
|
| 91 |
examples[idx_example].append('1024x1024')
|
| 92 |
examples.append(examples[-1].copy())
|
|
|
|
| 94 |
|
| 95 |
demo = gr.Interface(
|
| 96 |
fn=predict,
|
| 97 |
+
inputs=['image', gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `512x512`. Higher resolutions can be much slower for inference.", label="Resolution")],
|
| 98 |
+
outputs=ImageSlider(),
|
| 99 |
examples=examples,
|
| 100 |
title='Online demo for `Bilateral Reference for High-Resolution Dichotomous Image Segmentation`',
|
| 101 |
description=('Upload a picture, our model will give you the binary maps of the highly accurate segmentation of the salient objects in it. :)'
|
config.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
import os
|
| 2 |
import math
|
| 3 |
|
|
|
|
|
|
|
| 4 |
|
| 5 |
class Config():
|
| 6 |
def __init__(self) -> None:
|
|
@@ -97,7 +99,7 @@ class Config():
|
|
| 97 |
self.lambda_adv_d = 3. * (self.lambda_adv_g > 0)
|
| 98 |
|
| 99 |
# others
|
| 100 |
-
self.device =
|
| 101 |
|
| 102 |
self.batch_size_valid = 1
|
| 103 |
self.rand_seed = 7
|
|
|
|
| 1 |
import os
|
| 2 |
import math
|
| 3 |
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
|
| 7 |
class Config():
|
| 8 |
def __init__(self) -> None:
|
|
|
|
| 99 |
self.lambda_adv_d = 3. * (self.lambda_adv_g > 0)
|
| 100 |
|
| 101 |
# others
|
| 102 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 103 |
|
| 104 |
self.batch_size_valid = 1
|
| 105 |
self.rand_seed = 7
|
requirements.txt
CHANGED
|
@@ -1,6 +1,4 @@
|
|
| 1 |
-
--extra-index-url https://download.pytorch.org/whl/cu118
|
| 2 |
torch==2.0.1
|
| 3 |
-
--extra-index-url https://download.pytorch.org/whl/cu118
|
| 4 |
torchvision==0.15.2
|
| 5 |
opencv-python==4.9.0.80
|
| 6 |
tqdm==4.66.2
|
|
@@ -9,3 +7,4 @@ prettytable==3.10.0
|
|
| 9 |
scipy==1.12.0
|
| 10 |
scikit-image==0.22.0
|
| 11 |
kornia==0.7.1
|
|
|
|
|
|
|
|
|
| 1 |
torch==2.0.1
|
|
|
|
| 2 |
torchvision==0.15.2
|
| 3 |
opencv-python==4.9.0.80
|
| 4 |
tqdm==4.66.2
|
|
|
|
| 7 |
scipy==1.12.0
|
| 8 |
scikit-image==0.22.0
|
| 9 |
kornia==0.7.1
|
| 10 |
+
gradio_imageslider==0.0.18
|