Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Commit 
							
							·
						
						59b8f8d
	
1
								Parent(s):
							
							dc4c093
								
Update the model codes, including the previous inconsistencies.
Browse files- models/backbones/build_backbone.py +1 -1
- models/backbones/swin_v1.py +0 -25
- models/{baseline.py → birefnet.py} +44 -47
- models/modules/aspp.py +7 -50
- models/modules/decoder_blocks.py +4 -4
- models/refinement/refiner.py +1 -1
    	
        models/backbones/build_backbone.py
    CHANGED
    
    | @@ -2,7 +2,7 @@ import torch | |
| 2 | 
             
            import torch.nn as nn
         | 
| 3 | 
             
            from collections import OrderedDict
         | 
| 4 | 
             
            from torchvision.models import vgg16, vgg16_bn, VGG16_Weights, VGG16_BN_Weights, resnet50, ResNet50_Weights
         | 
| 5 | 
            -
            from models.backbones.pvt_v2 import pvt_v2_b2, pvt_v2_b5
         | 
| 6 | 
             
            from models.backbones.swin_v1 import swin_v1_t, swin_v1_s, swin_v1_b, swin_v1_l
         | 
| 7 | 
             
            from config import Config
         | 
| 8 |  | 
|  | |
| 2 | 
             
            import torch.nn as nn
         | 
| 3 | 
             
            from collections import OrderedDict
         | 
| 4 | 
             
            from torchvision.models import vgg16, vgg16_bn, VGG16_Weights, VGG16_BN_Weights, resnet50, ResNet50_Weights
         | 
| 5 | 
            +
            from models.backbones.pvt_v2 import pvt_v2_b0, pvt_v2_b1, pvt_v2_b2, pvt_v2_b5
         | 
| 6 | 
             
            from models.backbones.swin_v1 import swin_v1_t, swin_v1_s, swin_v1_b, swin_v1_l
         | 
| 7 | 
             
            from config import Config
         | 
| 8 |  | 
    	
        models/backbones/swin_v1.py
    CHANGED
    
    | @@ -578,31 +578,6 @@ class SwinTransformer(nn.Module): | |
| 578 | 
             
                            for param in m.parameters():
         | 
| 579 | 
             
                                param.requires_grad = False
         | 
| 580 |  | 
| 581 | 
            -
                def init_weights(self, pretrained=None):
         | 
| 582 | 
            -
                    """Initialize the weights in backbone.
         | 
| 583 | 
            -
             | 
| 584 | 
            -
                    Args:
         | 
| 585 | 
            -
                        pretrained (str, optional): Path to pre-trained weights.
         | 
| 586 | 
            -
                            Defaults to None.
         | 
| 587 | 
            -
                    """
         | 
| 588 | 
            -
             | 
| 589 | 
            -
                    def _init_weights(m):
         | 
| 590 | 
            -
                        if isinstance(m, nn.Linear):
         | 
| 591 | 
            -
                            trunc_normal_(m.weight, std=.02)
         | 
| 592 | 
            -
                            if isinstance(m, nn.Linear) and m.bias is not None:
         | 
| 593 | 
            -
                                nn.init.constant_(m.bias, 0)
         | 
| 594 | 
            -
                        elif isinstance(m, nn.LayerNorm):
         | 
| 595 | 
            -
                            nn.init.constant_(m.bias, 0)
         | 
| 596 | 
            -
                            nn.init.constant_(m.weight, 1.0)
         | 
| 597 | 
            -
             | 
| 598 | 
            -
                    if isinstance(pretrained, str):
         | 
| 599 | 
            -
                        self.apply(_init_weights)
         | 
| 600 | 
            -
                        logger = get_root_logger()
         | 
| 601 | 
            -
                        load_checkpoint(self, pretrained, strict=False, logger=logger)
         | 
| 602 | 
            -
                    elif pretrained is None:
         | 
| 603 | 
            -
                        self.apply(_init_weights)
         | 
| 604 | 
            -
                    else:
         | 
| 605 | 
            -
                        raise TypeError('pretrained must be a str or None')
         | 
| 606 |  | 
| 607 | 
             
                def forward(self, x):
         | 
| 608 | 
             
                    """Forward function."""
         | 
|  | |
| 578 | 
             
                            for param in m.parameters():
         | 
| 579 | 
             
                                param.requires_grad = False
         | 
| 580 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 581 |  | 
| 582 | 
             
                def forward(self, x):
         | 
| 583 | 
             
                    """Forward function."""
         | 
    	
        models/{baseline.py → birefnet.py}
    RENAMED
    
    | @@ -41,14 +41,6 @@ class BiRefNet(nn.Module): | |
| 41 | 
             
                        ])
         | 
| 42 |  | 
| 43 | 
             
                    self.decoder = Decoder(channels)
         | 
| 44 | 
            -
                    
         | 
| 45 | 
            -
                    if self.config.locate_head:
         | 
| 46 | 
            -
                        self.locate_header = nn.ModuleList([
         | 
| 47 | 
            -
                            BasicDecBlk(channels[0], channels[-1]),
         | 
| 48 | 
            -
                            nn.Sequential(
         | 
| 49 | 
            -
                                nn.Conv2d(channels[-1], 1, 1, 1, 0),
         | 
| 50 | 
            -
                            )
         | 
| 51 | 
            -
                        ])
         | 
| 52 |  | 
| 53 | 
             
                    if self.config.ender:
         | 
| 54 | 
             
                        self.dec_end = nn.Sequential(
         | 
| @@ -60,7 +52,7 @@ class BiRefNet(nn.Module): | |
| 60 | 
             
                    # refine patch-level segmentation
         | 
| 61 | 
             
                    if self.config.refine:
         | 
| 62 | 
             
                        if self.config.refine == 'itself':
         | 
| 63 | 
            -
                            self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3)
         | 
| 64 | 
             
                        else:
         | 
| 65 | 
             
                            self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1'))
         | 
| 66 |  | 
| @@ -105,20 +97,6 @@ class BiRefNet(nn.Module): | |
| 105 | 
             
                        )
         | 
| 106 | 
             
                    return (x1, x2, x3, x4), class_preds
         | 
| 107 |  | 
| 108 | 
            -
                # def forward_loc(self, x):
         | 
| 109 | 
            -
                #     ########## Encoder ##########
         | 
| 110 | 
            -
                #     (x1, x2, x3, x4), class_preds = self.forward_enc(x)
         | 
| 111 | 
            -
                #     if self.config.squeeze_block:
         | 
| 112 | 
            -
                #         x4 = self.squeeze_module(x4)
         | 
| 113 | 
            -
                #     if self.config.locate_head:
         | 
| 114 | 
            -
                #         locate_preds = self.locate_header[1](
         | 
| 115 | 
            -
                #             F.interpolate(
         | 
| 116 | 
            -
                #                 self.locate_header[0](
         | 
| 117 | 
            -
                #                     F.interpolate(x4, size=x2.shape[2:], mode='bilinear', align_corners=True)
         | 
| 118 | 
            -
                #                 ), size=x.shape[2:], mode='bilinear', align_corners=True
         | 
| 119 | 
            -
                #             )
         | 
| 120 | 
            -
                #         )
         | 
| 121 | 
            -
             | 
| 122 | 
             
                def forward_ori(self, x):
         | 
| 123 | 
             
                    ########## Encoder ##########
         | 
| 124 | 
             
                    (x1, x2, x3, x4), class_preds = self.forward_enc(x)
         | 
| @@ -131,22 +109,22 @@ class BiRefNet(nn.Module): | |
| 131 | 
             
                    scaled_preds = self.decoder(features)
         | 
| 132 | 
             
                    return scaled_preds, class_preds
         | 
| 133 |  | 
| 134 | 
            -
                def forward_ref(self, x, pred):
         | 
| 135 | 
            -
             | 
| 136 | 
            -
             | 
| 137 | 
            -
             | 
| 138 | 
            -
             | 
| 139 | 
            -
             | 
| 140 | 
            -
             | 
| 141 | 
            -
             | 
| 142 | 
            -
             | 
| 143 | 
            -
             | 
| 144 | 
            -
             | 
| 145 | 
            -
             | 
| 146 |  | 
| 147 | 
            -
                def forward_ref_end(self, x):
         | 
| 148 | 
            -
             | 
| 149 | 
            -
             | 
| 150 |  | 
| 151 |  | 
| 152 | 
             
                # def forward(self, x):
         | 
| @@ -181,6 +159,7 @@ class Decoder(nn.Module): | |
| 181 | 
             
                        DBlock = SimpleConvs
         | 
| 182 | 
             
                        ic = 64
         | 
| 183 | 
             
                        ipt_cha_opt = 1
         | 
|  | |
| 184 | 
             
                        self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
         | 
| 185 | 
             
                        self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic)
         | 
| 186 | 
             
                        self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic)
         | 
| @@ -188,7 +167,7 @@ class Decoder(nn.Module): | |
| 188 | 
             
                    else:
         | 
| 189 | 
             
                        self.split = None
         | 
| 190 |  | 
| 191 | 
            -
                    self.decoder_block4 = DecoderBlock(channels[0], channels[1])
         | 
| 192 | 
             
                    self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2])
         | 
| 193 | 
             
                    self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3])
         | 
| 194 | 
             
                    self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2)
         | 
| @@ -205,15 +184,15 @@ class Decoder(nn.Module): | |
| 205 |  | 
| 206 | 
             
                        if self.config.out_ref:
         | 
| 207 | 
             
                            _N = 16
         | 
| 208 | 
            -
                             | 
| 209 | 
            -
                            self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N), nn.ReLU(inplace=True))
         | 
| 210 | 
            -
                            self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N), nn.ReLU(inplace=True))
         | 
| 211 |  | 
| 212 | 
            -
                             | 
| 213 | 
             
                            self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         | 
| 214 | 
             
                            self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         | 
| 215 |  | 
| 216 | 
            -
                             | 
| 217 | 
             
                            self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         | 
| 218 | 
             
                            self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         | 
| 219 |  | 
| @@ -238,14 +217,31 @@ class Decoder(nn.Module): | |
| 238 | 
             
                    else:
         | 
| 239 | 
             
                        x, x1, x2, x3, x4 = features
         | 
| 240 | 
             
                    outs = []
         | 
|  | |
|  | |
|  | |
|  | |
| 241 | 
             
                    p4 = self.decoder_block4(x4)
         | 
| 242 | 
             
                    m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision else None
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 243 | 
             
                    _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
         | 
| 244 | 
             
                    _p3 = _p4 + self.lateral_block4(x3)
         | 
|  | |
| 245 | 
             
                    if self.config.dec_ipt:
         | 
| 246 | 
             
                        patches_batch = self.get_patches_batch(x, _p3) if self.split else x
         | 
| 247 | 
             
                        _p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
         | 
| 248 | 
            -
             | 
| 249 | 
             
                    p3 = self.decoder_block3(_p3)
         | 
| 250 | 
             
                    m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision else None
         | 
| 251 | 
             
                    if self.config.out_ref:
         | 
| @@ -268,10 +264,10 @@ class Decoder(nn.Module): | |
| 268 | 
             
                        p3 = p3 * gdt_attn_3
         | 
| 269 | 
             
                    _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
         | 
| 270 | 
             
                    _p2 = _p3 + self.lateral_block3(x2)
         | 
|  | |
| 271 | 
             
                    if self.config.dec_ipt:
         | 
| 272 | 
             
                        patches_batch = self.get_patches_batch(x, _p2) if self.split else x
         | 
| 273 | 
             
                        _p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
         | 
| 274 | 
            -
             | 
| 275 | 
             
                    p2 = self.decoder_block2(_p2)
         | 
| 276 | 
             
                    m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision else None
         | 
| 277 | 
             
                    if self.config.out_ref:
         | 
| @@ -289,12 +285,13 @@ class Decoder(nn.Module): | |
| 289 | 
             
                        p2 = p2 * gdt_attn_2
         | 
| 290 | 
             
                    _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
         | 
| 291 | 
             
                    _p1 = _p2 + self.lateral_block2(x1)
         | 
|  | |
| 292 | 
             
                    if self.config.dec_ipt:
         | 
| 293 | 
             
                        patches_batch = self.get_patches_batch(x, _p1) if self.split else x
         | 
| 294 | 
             
                        _p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
         | 
| 295 | 
            -
             | 
| 296 | 
             
                    _p1 = self.decoder_block1(_p1)
         | 
| 297 | 
             
                    _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
         | 
|  | |
| 298 | 
             
                    if self.config.dec_ipt:
         | 
| 299 | 
             
                        patches_batch = self.get_patches_batch(x, _p1) if self.split else x
         | 
| 300 | 
             
                        _p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
         | 
|  | |
| 41 | 
             
                        ])
         | 
| 42 |  | 
| 43 | 
             
                    self.decoder = Decoder(channels)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 44 |  | 
| 45 | 
             
                    if self.config.ender:
         | 
| 46 | 
             
                        self.dec_end = nn.Sequential(
         | 
|  | |
| 52 | 
             
                    # refine patch-level segmentation
         | 
| 53 | 
             
                    if self.config.refine:
         | 
| 54 | 
             
                        if self.config.refine == 'itself':
         | 
| 55 | 
            +
                            self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
         | 
| 56 | 
             
                        else:
         | 
| 57 | 
             
                            self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1'))
         | 
| 58 |  | 
|  | |
| 97 | 
             
                        )
         | 
| 98 | 
             
                    return (x1, x2, x3, x4), class_preds
         | 
| 99 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 100 | 
             
                def forward_ori(self, x):
         | 
| 101 | 
             
                    ########## Encoder ##########
         | 
| 102 | 
             
                    (x1, x2, x3, x4), class_preds = self.forward_enc(x)
         | 
|  | |
| 109 | 
             
                    scaled_preds = self.decoder(features)
         | 
| 110 | 
             
                    return scaled_preds, class_preds
         | 
| 111 |  | 
| 112 | 
            +
                # def forward_ref(self, x, pred):
         | 
| 113 | 
            +
                #     # refine patch-level segmentation
         | 
| 114 | 
            +
                #     if pred.shape[2:] != x.shape[2:]:
         | 
| 115 | 
            +
                #         pred = F.interpolate(pred, size=x.shape[2:], mode='bilinear', align_corners=True)
         | 
| 116 | 
            +
                #     # pred = pred.sigmoid()
         | 
| 117 | 
            +
                #     if self.config.refine == 'itself':
         | 
| 118 | 
            +
                #         x = self.stem_layer(torch.cat([x, pred], dim=1))
         | 
| 119 | 
            +
                #         scaled_preds, class_preds = self.forward_ori(x)
         | 
| 120 | 
            +
                #     else:
         | 
| 121 | 
            +
                #         scaled_preds = self.refiner([x, pred])
         | 
| 122 | 
            +
                #         class_preds = None
         | 
| 123 | 
            +
                #     return scaled_preds, class_preds
         | 
| 124 |  | 
| 125 | 
            +
                # def forward_ref_end(self, x):
         | 
| 126 | 
            +
                #     # remove the grids of concatenated preds
         | 
| 127 | 
            +
                #     return self.dec_end(x) if self.config.ender else x
         | 
| 128 |  | 
| 129 |  | 
| 130 | 
             
                # def forward(self, x):
         | 
|  | |
| 159 | 
             
                        DBlock = SimpleConvs
         | 
| 160 | 
             
                        ic = 64
         | 
| 161 | 
             
                        ipt_cha_opt = 1
         | 
| 162 | 
            +
                        self.ipt_blk5 = DBlock(2**10*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
         | 
| 163 | 
             
                        self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
         | 
| 164 | 
             
                        self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic)
         | 
| 165 | 
             
                        self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic)
         | 
|  | |
| 167 | 
             
                    else:
         | 
| 168 | 
             
                        self.split = None
         | 
| 169 |  | 
| 170 | 
            +
                    self.decoder_block4 = DecoderBlock(channels[0]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[1])
         | 
| 171 | 
             
                    self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2])
         | 
| 172 | 
             
                    self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3])
         | 
| 173 | 
             
                    self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2)
         | 
|  | |
| 184 |  | 
| 185 | 
             
                        if self.config.out_ref:
         | 
| 186 | 
             
                            _N = 16
         | 
| 187 | 
            +
                            self.gdt_convs_4 = nn.Sequential(nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
         | 
| 188 | 
            +
                            self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
         | 
| 189 | 
            +
                            self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
         | 
| 190 |  | 
| 191 | 
            +
                            self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         | 
| 192 | 
             
                            self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         | 
| 193 | 
             
                            self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         | 
| 194 |  | 
| 195 | 
            +
                            self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         | 
| 196 | 
             
                            self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         | 
| 197 | 
             
                            self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         | 
| 198 |  | 
|  | |
| 217 | 
             
                    else:
         | 
| 218 | 
             
                        x, x1, x2, x3, x4 = features
         | 
| 219 | 
             
                    outs = []
         | 
| 220 | 
            +
             | 
| 221 | 
            +
                    if self.config.dec_ipt:
         | 
| 222 | 
            +
                        patches_batch = self.get_patches_batch(x, x4) if self.split else x
         | 
| 223 | 
            +
                        x4 = torch.cat((x4, self.ipt_blk5(F.interpolate(patches_batch, size=x4.shape[2:], mode='bilinear', align_corners=True))), 1)
         | 
| 224 | 
             
                    p4 = self.decoder_block4(x4)
         | 
| 225 | 
             
                    m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision else None
         | 
| 226 | 
            +
                    if self.config.out_ref:
         | 
| 227 | 
            +
                        p4_gdt = self.gdt_convs_4(p4)
         | 
| 228 | 
            +
                        if self.training:
         | 
| 229 | 
            +
                            # >> GT:
         | 
| 230 | 
            +
                            m4_dia = m4
         | 
| 231 | 
            +
                            gdt_label_main_4 = gdt_gt * F.interpolate(m4_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
         | 
| 232 | 
            +
                            outs_gdt_label.append(gdt_label_main_4)
         | 
| 233 | 
            +
                            # >> Pred:
         | 
| 234 | 
            +
                            gdt_pred_4 = self.gdt_convs_pred_4(p4_gdt)
         | 
| 235 | 
            +
                            outs_gdt_pred.append(gdt_pred_4)
         | 
| 236 | 
            +
                        gdt_attn_4 = self.gdt_convs_attn_4(p4_gdt).sigmoid()
         | 
| 237 | 
            +
                        # >> Finally:
         | 
| 238 | 
            +
                        p4 = p4 * gdt_attn_4
         | 
| 239 | 
             
                    _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
         | 
| 240 | 
             
                    _p3 = _p4 + self.lateral_block4(x3)
         | 
| 241 | 
            +
             | 
| 242 | 
             
                    if self.config.dec_ipt:
         | 
| 243 | 
             
                        patches_batch = self.get_patches_batch(x, _p3) if self.split else x
         | 
| 244 | 
             
                        _p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
         | 
|  | |
| 245 | 
             
                    p3 = self.decoder_block3(_p3)
         | 
| 246 | 
             
                    m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision else None
         | 
| 247 | 
             
                    if self.config.out_ref:
         | 
|  | |
| 264 | 
             
                        p3 = p3 * gdt_attn_3
         | 
| 265 | 
             
                    _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
         | 
| 266 | 
             
                    _p2 = _p3 + self.lateral_block3(x2)
         | 
| 267 | 
            +
             | 
| 268 | 
             
                    if self.config.dec_ipt:
         | 
| 269 | 
             
                        patches_batch = self.get_patches_batch(x, _p2) if self.split else x
         | 
| 270 | 
             
                        _p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
         | 
|  | |
| 271 | 
             
                    p2 = self.decoder_block2(_p2)
         | 
| 272 | 
             
                    m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision else None
         | 
| 273 | 
             
                    if self.config.out_ref:
         | 
|  | |
| 285 | 
             
                        p2 = p2 * gdt_attn_2
         | 
| 286 | 
             
                    _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
         | 
| 287 | 
             
                    _p1 = _p2 + self.lateral_block2(x1)
         | 
| 288 | 
            +
             | 
| 289 | 
             
                    if self.config.dec_ipt:
         | 
| 290 | 
             
                        patches_batch = self.get_patches_batch(x, _p1) if self.split else x
         | 
| 291 | 
             
                        _p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
         | 
|  | |
| 292 | 
             
                    _p1 = self.decoder_block1(_p1)
         | 
| 293 | 
             
                    _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
         | 
| 294 | 
            +
             | 
| 295 | 
             
                    if self.config.dec_ipt:
         | 
| 296 | 
             
                        patches_batch = self.get_patches_batch(x, _p1) if self.split else x
         | 
| 297 | 
             
                        _p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
         | 
    	
        models/modules/aspp.py
    CHANGED
    
    | @@ -8,56 +8,12 @@ from config import Config | |
| 8 | 
             
            config = Config()
         | 
| 9 |  | 
| 10 |  | 
| 11 | 
            -
            class ASPPComplex(nn.Module):
         | 
| 12 | 
            -
                def __init__(self, in_channels=64, out_channels=None, output_stride=16):
         | 
| 13 | 
            -
                    super(ASPPComplex, self).__init__()
         | 
| 14 | 
            -
                    self.down_scale = 1
         | 
| 15 | 
            -
                    if out_channels is None:
         | 
| 16 | 
            -
                        out_channels = in_channels
         | 
| 17 | 
            -
                    self.in_channelster = 256 // self.down_scale
         | 
| 18 | 
            -
                    if output_stride == 16:
         | 
| 19 | 
            -
                        dilations = [1, 6, 12, 18]
         | 
| 20 | 
            -
                    elif output_stride == 8:
         | 
| 21 | 
            -
                        dilations = [1, 12, 24, 36]
         | 
| 22 | 
            -
                    else:
         | 
| 23 | 
            -
                        raise NotImplementedError
         | 
| 24 | 
            -
             | 
| 25 | 
            -
                    self.aspp1 = _ASPPModule(in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0])
         | 
| 26 | 
            -
                    self.aspp2 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[1], dilation=dilations[1])
         | 
| 27 | 
            -
                    self.aspp3 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[2], dilation=dilations[2])
         | 
| 28 | 
            -
                    self.aspp4 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[3], dilation=dilations[3])
         | 
| 29 | 
            -
             | 
| 30 | 
            -
                    self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
         | 
| 31 | 
            -
                                                         nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
         | 
| 32 | 
            -
                                                         nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
         | 
| 33 | 
            -
                                                         nn.ReLU(inplace=True))
         | 
| 34 | 
            -
                    self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
         | 
| 35 | 
            -
                    self.bn1 = nn.BatchNorm2d(out_channels)
         | 
| 36 | 
            -
                    self.relu = nn.ReLU(inplace=True)
         | 
| 37 | 
            -
                    self.dropout = nn.Dropout(0.5)
         | 
| 38 | 
            -
             | 
| 39 | 
            -
                def forward(self, x):
         | 
| 40 | 
            -
                    x1 = self.aspp1(x)
         | 
| 41 | 
            -
                    x2 = self.aspp2(x)
         | 
| 42 | 
            -
                    x3 = self.aspp3(x)
         | 
| 43 | 
            -
                    x4 = self.aspp4(x)
         | 
| 44 | 
            -
                    x5 = self.global_avg_pool(x)
         | 
| 45 | 
            -
                    x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
         | 
| 46 | 
            -
                    x = torch.cat((x1, x2, x3, x4, x5), dim=1)
         | 
| 47 | 
            -
             | 
| 48 | 
            -
                    x = self.conv1(x)
         | 
| 49 | 
            -
                    x = self.bn1(x)
         | 
| 50 | 
            -
                    x = self.relu(x)
         | 
| 51 | 
            -
             | 
| 52 | 
            -
                    return self.dropout(x)
         | 
| 53 | 
            -
             | 
| 54 | 
            -
             | 
| 55 | 
             
            class _ASPPModule(nn.Module):
         | 
| 56 | 
             
                def __init__(self, in_channels, planes, kernel_size, padding, dilation):
         | 
| 57 | 
             
                    super(_ASPPModule, self).__init__()
         | 
| 58 | 
             
                    self.atrous_conv = nn.Conv2d(in_channels, planes, kernel_size=kernel_size,
         | 
| 59 | 
             
                                                        stride=1, padding=padding, dilation=dilation, bias=False)
         | 
| 60 | 
            -
                    self.bn = nn.BatchNorm2d(planes)
         | 
| 61 | 
             
                    self.relu = nn.ReLU(inplace=True)
         | 
| 62 |  | 
| 63 | 
             
                def forward(self, x):
         | 
| @@ -66,6 +22,7 @@ class _ASPPModule(nn.Module): | |
| 66 |  | 
| 67 | 
             
                    return self.relu(x)
         | 
| 68 |  | 
|  | |
| 69 | 
             
            class ASPP(nn.Module):
         | 
| 70 | 
             
                def __init__(self, in_channels=64, out_channels=None, output_stride=16):
         | 
| 71 | 
             
                    super(ASPP, self).__init__()
         | 
| @@ -90,7 +47,7 @@ class ASPP(nn.Module): | |
| 90 | 
             
                                                         nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
         | 
| 91 | 
             
                                                         nn.ReLU(inplace=True))
         | 
| 92 | 
             
                    self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
         | 
| 93 | 
            -
                    self.bn1 = nn.BatchNorm2d(out_channels)
         | 
| 94 | 
             
                    self.relu = nn.ReLU(inplace=True)
         | 
| 95 | 
             
                    self.dropout = nn.Dropout(0.5)
         | 
| 96 |  | 
| @@ -116,7 +73,7 @@ class _ASPPModuleDeformable(nn.Module): | |
| 116 | 
             
                    super(_ASPPModuleDeformable, self).__init__()
         | 
| 117 | 
             
                    self.atrous_conv = DeformableConv2d(in_channels, planes, kernel_size=kernel_size,
         | 
| 118 | 
             
                                                        stride=1, padding=padding, bias=False)
         | 
| 119 | 
            -
                    self.bn = nn.BatchNorm2d(planes)
         | 
| 120 | 
             
                    self.relu = nn.ReLU(inplace=True)
         | 
| 121 |  | 
| 122 | 
             
                def forward(self, x):
         | 
| @@ -127,7 +84,7 @@ class _ASPPModuleDeformable(nn.Module): | |
| 127 |  | 
| 128 |  | 
| 129 | 
             
            class ASPPDeformable(nn.Module):
         | 
| 130 | 
            -
                def __init__(self, in_channels, out_channels=None,  | 
| 131 | 
             
                    super(ASPPDeformable, self).__init__()
         | 
| 132 | 
             
                    self.down_scale = 1
         | 
| 133 | 
             
                    if out_channels is None:
         | 
| @@ -136,7 +93,7 @@ class ASPPDeformable(nn.Module): | |
| 136 |  | 
| 137 | 
             
                    self.aspp1 = _ASPPModuleDeformable(in_channels, self.in_channelster, 1, padding=0)
         | 
| 138 | 
             
                    self.aspp_deforms = nn.ModuleList([
         | 
| 139 | 
            -
                        _ASPPModuleDeformable(in_channels, self.in_channelster,  | 
| 140 | 
             
                    ])
         | 
| 141 |  | 
| 142 | 
             
                    self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
         | 
| @@ -144,7 +101,7 @@ class ASPPDeformable(nn.Module): | |
| 144 | 
             
                                                         nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
         | 
| 145 | 
             
                                                         nn.ReLU(inplace=True))
         | 
| 146 | 
             
                    self.conv1 = nn.Conv2d(self.in_channelster * (2 + len(self.aspp_deforms)), out_channels, 1, bias=False)
         | 
| 147 | 
            -
                    self.bn1 = nn.BatchNorm2d(out_channels)
         | 
| 148 | 
             
                    self.relu = nn.ReLU(inplace=True)
         | 
| 149 | 
             
                    self.dropout = nn.Dropout(0.5)
         | 
| 150 |  | 
|  | |
| 8 | 
             
            config = Config()
         | 
| 9 |  | 
| 10 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 11 | 
             
            class _ASPPModule(nn.Module):
         | 
| 12 | 
             
                def __init__(self, in_channels, planes, kernel_size, padding, dilation):
         | 
| 13 | 
             
                    super(_ASPPModule, self).__init__()
         | 
| 14 | 
             
                    self.atrous_conv = nn.Conv2d(in_channels, planes, kernel_size=kernel_size,
         | 
| 15 | 
             
                                                        stride=1, padding=padding, dilation=dilation, bias=False)
         | 
| 16 | 
            +
                    self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
         | 
| 17 | 
             
                    self.relu = nn.ReLU(inplace=True)
         | 
| 18 |  | 
| 19 | 
             
                def forward(self, x):
         | 
|  | |
| 22 |  | 
| 23 | 
             
                    return self.relu(x)
         | 
| 24 |  | 
| 25 | 
            +
             | 
| 26 | 
             
            class ASPP(nn.Module):
         | 
| 27 | 
             
                def __init__(self, in_channels=64, out_channels=None, output_stride=16):
         | 
| 28 | 
             
                    super(ASPP, self).__init__()
         | 
|  | |
| 47 | 
             
                                                         nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
         | 
| 48 | 
             
                                                         nn.ReLU(inplace=True))
         | 
| 49 | 
             
                    self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
         | 
| 50 | 
            +
                    self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
         | 
| 51 | 
             
                    self.relu = nn.ReLU(inplace=True)
         | 
| 52 | 
             
                    self.dropout = nn.Dropout(0.5)
         | 
| 53 |  | 
|  | |
| 73 | 
             
                    super(_ASPPModuleDeformable, self).__init__()
         | 
| 74 | 
             
                    self.atrous_conv = DeformableConv2d(in_channels, planes, kernel_size=kernel_size,
         | 
| 75 | 
             
                                                        stride=1, padding=padding, bias=False)
         | 
| 76 | 
            +
                    self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
         | 
| 77 | 
             
                    self.relu = nn.ReLU(inplace=True)
         | 
| 78 |  | 
| 79 | 
             
                def forward(self, x):
         | 
|  | |
| 84 |  | 
| 85 |  | 
| 86 | 
             
            class ASPPDeformable(nn.Module):
         | 
| 87 | 
            +
                def __init__(self, in_channels, out_channels=None, parallel_block_sizes=[1, 3, 7]):
         | 
| 88 | 
             
                    super(ASPPDeformable, self).__init__()
         | 
| 89 | 
             
                    self.down_scale = 1
         | 
| 90 | 
             
                    if out_channels is None:
         | 
|  | |
| 93 |  | 
| 94 | 
             
                    self.aspp1 = _ASPPModuleDeformable(in_channels, self.in_channelster, 1, padding=0)
         | 
| 95 | 
             
                    self.aspp_deforms = nn.ModuleList([
         | 
| 96 | 
            +
                        _ASPPModuleDeformable(in_channels, self.in_channelster, conv_size, padding=int(conv_size//2)) for conv_size in parallel_block_sizes
         | 
| 97 | 
             
                    ])
         | 
| 98 |  | 
| 99 | 
             
                    self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
         | 
|  | |
| 101 | 
             
                                                         nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
         | 
| 102 | 
             
                                                         nn.ReLU(inplace=True))
         | 
| 103 | 
             
                    self.conv1 = nn.Conv2d(self.in_channelster * (2 + len(self.aspp_deforms)), out_channels, 1, bias=False)
         | 
| 104 | 
            +
                    self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
         | 
| 105 | 
             
                    self.relu = nn.ReLU(inplace=True)
         | 
| 106 | 
             
                    self.dropout = nn.Dropout(0.5)
         | 
| 107 |  | 
    	
        models/modules/decoder_blocks.py
    CHANGED
    
    | @@ -19,8 +19,8 @@ class BasicDecBlk(nn.Module): | |
| 19 | 
             
                    elif config.dec_att == 'ASPPDeformable':
         | 
| 20 | 
             
                        self.dec_att = ASPPDeformable(in_channels=inter_channels)
         | 
| 21 | 
             
                    self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
         | 
| 22 | 
            -
                    self.bn_in = nn.BatchNorm2d(inter_channels)
         | 
| 23 | 
            -
                    self.bn_out = nn.BatchNorm2d(out_channels)
         | 
| 24 |  | 
| 25 | 
             
                def forward(self, x):
         | 
| 26 | 
             
                    x = self.conv_in(x)
         | 
| @@ -41,7 +41,7 @@ class ResBlk(nn.Module): | |
| 41 | 
             
                    inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
         | 
| 42 |  | 
| 43 | 
             
                    self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
         | 
| 44 | 
            -
                    self.bn_in = nn.BatchNorm2d(inter_channels)
         | 
| 45 | 
             
                    self.relu_in = nn.ReLU(inplace=True)
         | 
| 46 |  | 
| 47 | 
             
                    if config.dec_att == 'ASPP':
         | 
| @@ -50,7 +50,7 @@ class ResBlk(nn.Module): | |
| 50 | 
             
                        self.dec_att = ASPPDeformable(in_channels=inter_channels)
         | 
| 51 |  | 
| 52 | 
             
                    self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
         | 
| 53 | 
            -
                    self.bn_out = nn.BatchNorm2d(out_channels)
         | 
| 54 |  | 
| 55 | 
             
                    self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
         | 
| 56 |  | 
|  | |
| 19 | 
             
                    elif config.dec_att == 'ASPPDeformable':
         | 
| 20 | 
             
                        self.dec_att = ASPPDeformable(in_channels=inter_channels)
         | 
| 21 | 
             
                    self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
         | 
| 22 | 
            +
                    self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
         | 
| 23 | 
            +
                    self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
         | 
| 24 |  | 
| 25 | 
             
                def forward(self, x):
         | 
| 26 | 
             
                    x = self.conv_in(x)
         | 
|  | |
| 41 | 
             
                    inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
         | 
| 42 |  | 
| 43 | 
             
                    self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
         | 
| 44 | 
            +
                    self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
         | 
| 45 | 
             
                    self.relu_in = nn.ReLU(inplace=True)
         | 
| 46 |  | 
| 47 | 
             
                    if config.dec_att == 'ASPP':
         | 
|  | |
| 50 | 
             
                        self.dec_att = ASPPDeformable(in_channels=inter_channels)
         | 
| 51 |  | 
| 52 | 
             
                    self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
         | 
| 53 | 
            +
                    self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
         | 
| 54 |  | 
| 55 | 
             
                    self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
         | 
| 56 |  | 
    	
        models/refinement/refiner.py
    CHANGED
    
    | @@ -65,7 +65,7 @@ class Refiner(nn.Module): | |
| 65 | 
             
                    super(Refiner, self).__init__()
         | 
| 66 | 
             
                    self.config = Config()
         | 
| 67 | 
             
                    self.epoch = 1
         | 
| 68 | 
            -
                    self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3)
         | 
| 69 | 
             
                    self.bb = build_backbone(self.config.bb)
         | 
| 70 |  | 
| 71 | 
             
                    lateral_channels_in_collection = {
         | 
|  | |
| 65 | 
             
                    super(Refiner, self).__init__()
         | 
| 66 | 
             
                    self.config = Config()
         | 
| 67 | 
             
                    self.epoch = 1
         | 
| 68 | 
            +
                    self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
         | 
| 69 | 
             
                    self.bb = build_backbone(self.config.bb)
         | 
| 70 |  | 
| 71 | 
             
                    lateral_channels_in_collection = {
         | 
