Spaces:
Paused
Paused
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| # Load the model and tokenizer | |
| model_name = "Ransss/llama3-8B-DarkIdol-2.0-Uncensored-Q8_0-GGUF" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name, load_in_8bit=True) | |
| def generate_text(prompt, max_length=100, temperature=0.7): | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| outputs = model.generate( | |
| inputs["input_ids"], | |
| max_length=max_length, | |
| temperature=temperature, | |
| do_sample=True, | |
| top_p=0.9, | |
| top_k=50, | |
| num_return_sequences=1, | |
| pad_token_id=tokenizer.eos_token_id, | |
| ) | |
| return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Create a Gradio interface | |
| gr.Interface( | |
| fn=generate_text, | |
| inputs=[ | |
| gr.inputs.Textbox(label="Input Text"), | |
| gr.inputs.Slider(label="Max Length", minimum=1, maximum=500, value=100, step=1), | |
| gr.inputs.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7, step=0.1), | |
| ], | |
| outputs=gr.outputs.Textbox(label="Generated Text"), | |
| title="LLAMA 3 8B Model", | |
| description="Generate text using the LLAMA 3 8B model.", | |
| examples=[ | |
| ["Write a poem about the sun"], | |
| ["Generate a story about a robot"], | |
| ["Create a song lyrics about love"], | |
| ], | |
| ).launch() |