add figures and change app.py
Browse files- NORMAL2-IM-0222-0001.jpeg +0 -0
- NORMAL2-IM-0285-0001.jpeg +0 -0
- NORMAL2-IM-0373-0001.jpeg +0 -0
- NORMAL2-IM-0381-0001.jpeg +0 -0
- app.py +67 -0
- person159_bacteria_747.jpeg +0 -0
- person1618_virus_2805.jpeg +0 -0
- person1_virus_6.jpeg +0 -0
- person82_bacteria_404.jpeg +0 -0
NORMAL2-IM-0222-0001.jpeg
ADDED
|
NORMAL2-IM-0285-0001.jpeg
ADDED
|
NORMAL2-IM-0373-0001.jpeg
ADDED
|
NORMAL2-IM-0381-0001.jpeg
ADDED
|
app.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Bismillahir Rahmaanir Raheem
|
| 2 |
+
# Almadadh Ya Gause Radi Allahu Ta'alah Anh - Ameen
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
from fastai.vision.all import *
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def is_pneumonia(x):
|
| 10 |
+
return (x.find('virus')!=-1 or x.find('bacteria')!=-1)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# load the trained fast ai model for predictions
|
| 15 |
+
learn = load_learner('model.pkl')
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# define the function to call
|
| 19 |
+
categories = ('Pneumonia', 'Normal')
|
| 20 |
+
|
| 21 |
+
def predict(img):
|
| 22 |
+
pred, idx, probs = learn.predict(img)
|
| 23 |
+
return dict(zip(categories, map(float, probs)))
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
title = "Pneumonia or Normal X-Ray Predictor"
|
| 27 |
+
|
| 28 |
+
description = "A pneumonia or normal x-ray predictor model trained on the chest-xray-pneumonia dataset with fastai. </br> Dataset taken from: <a href='https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia' target='_blank'>Chest X-Ray Images (Pneumonia)</a> and the associated scientific journal paper is <a href='https://www.cell.com/cell/fulltext/S0092-8674(18)30154-5' target='_blank'>Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning</a>"
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
article = "<p style='text-align: center'><span style='font-size: 15pt;'>Pneumonia or Normal X-Ray Predictor. Zakia Salod. 2022. </span></p>"
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
image = gr.inputs.Image(shape=(512, 512))
|
| 35 |
+
label = gr.outputs.Label()
|
| 36 |
+
examples = [
|
| 37 |
+
['person1_virus_6.jpeg'],
|
| 38 |
+
['NORMAL2-IM-0285-0001.jpeg'],
|
| 39 |
+
['person82_bacteria_404.jpeg'],
|
| 40 |
+
['NORMAL2-IM-0373-0001.jpeg'],
|
| 41 |
+
['person1618_virus_2805.jpeg'],
|
| 42 |
+
['NORMAL2-IM-0381-0001.jpeg'],
|
| 43 |
+
['person159_bacteria_747.jpeg'],
|
| 44 |
+
['NORMAL2-IM-0222-0001.jpeg'],
|
| 45 |
+
]
|
| 46 |
+
interpretation = 'default'
|
| 47 |
+
enable_queue = True
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
iface = gr.Interface(
|
| 53 |
+
fn=predict,
|
| 54 |
+
title=title,
|
| 55 |
+
description=description,
|
| 56 |
+
article=article,
|
| 57 |
+
inputs=image,
|
| 58 |
+
outputs=label,
|
| 59 |
+
theme="huggingface",
|
| 60 |
+
examples=examples,
|
| 61 |
+
interpretation=interpretation,
|
| 62 |
+
enable_queue=enable_queue
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
iface.launch(inline=False)
|
person159_bacteria_747.jpeg
ADDED
|
person1618_virus_2805.jpeg
ADDED
|
person1_virus_6.jpeg
ADDED
|
person82_bacteria_404.jpeg
ADDED
|