# ๐Ÿ›ฐ๏ธ ZETIC.ai โ€” On-Device AI for Every Device **Build. Deploy. Run. Anywhere.** ZETIC.ai helps AI engineers deploy models on *any* mobile device โ€” without cloud GPU servers. We transform your existing AI models into **NPU-optimized, on-device runtimes** in **under 6 hours** including from global device benchmark to runtime source code generation. --- ## ๐Ÿš€ What We Do **ZETIC.MLange** โ€” our core platform โ€” enables **serverless AI** by: - **Automated Conversion**: Convert your PyTorch, ONNX, or TFLite model into a device-specific NPU library. - **Peak Performance**: Up to **60ร— faster** than GPU cloud inference, with zero accuracy loss. - **Broad Compatibility**: Supports Android, iOS, Linux; MediaTek, Qualcomm, Apple NPUs โ€” more coming soon. - **End-to-End SDK**: From model optimization to app integration โ€” no extra engineering required. --- ## ๐Ÿ›  Key Features - **Zero GPU Costs** โ€” Replace expensive GPU cloud servers with *free* NPU power in devices. - **Full Privacy & Security** โ€” Data never leaves the device. - **Ultra-Low Latency** โ€” Real-time AI experiences, even offline. - **Cross-Platform** โ€” One model โ†’ All devices โ†’ Same performance. --- ## ๐Ÿ“ฆ Example Use Cases - ๐ŸŽ™ **Speech Recognition (Whisper)** โ€” Real-time, offline transcription on mobile. - ๐Ÿฆท **Dental AI Diagnostics** โ€” Instant tooth condition analysis via smartphone camera. - ๐ŸŒ๏ธ **Sports AI** โ€” On-device golf swing analytics. - ๐Ÿค– **On-Device LLMs** โ€” Chat & reasoning models running entirely offline. --- ## ๐Ÿ“Š Benchmarks | Device | Task | Cloud GPU | On-Device NPU | Speedup | |--------|------|-----------|---------------|---------| | iPhone 16 Pro | Whisper-Small | 1.2s | 0.07s | **ร—17** | | Galaxy S24 Ultra | LLaMA-3-8B | 2.4s/token | 0.09s/token | **ร—26** | [๐Ÿ”— See more benchmarks ยป](https://mlange.zetic.ai) ### YOLOv8n โ€” NPU Latency (ms) | Device | Manufacturer | CPU | GPU | CPU/GPU | NPU | |--------|--------------|-----|-----|---------|-----| | Apple iPhone 16 | Apple | 126.27 | - | 8.98 | **2.03** | | Apple iPhone 16 Pro | Apple | 122.23 | - | 7.54 | **1.69** | | Samsung Galaxy S24+ | Qualcomm | 69.79 | 24.38 | 618.05 | **3.85** | | Samsung Galaxy Tab S9 | Qualcomm | 107.78 | 30.39 | 344.42 | **5.21** | | Samsung Galaxy S22 Ultra 5G | Qualcomm | 103.40 | 39.73 | 100.34 | **7.41** | --- ### Whisper-tiny-encoder โ€” NPU Latency (ms) | Device | Manufacturer | CPU | GPU | CPU/GPU | NPU | |--------|--------------|-----|-----|---------|-----| | Apple iPhone 16 | Apple | 552.13 | - | 44.49 | **19.01** | | Apple iPhone 15 Pro | Apple | 527.78 | - | 43.13 | **19.40** | } Samsung Galaxy S23 | Qualcomm | 290.62ms | 169.82ms | 2,795.18ms | **86.88** | | Samsung Galaxy S24+ | Qualcomm | 278.78 | 133.48 | 2619.56 | **106.44** | | Samsung Galaxy S23 Ultra | Qualcomm | 308.82 | 170.08 | 2688.97 | **68.34** | - **You can get runtime source code and benchmark report of your model with [ZETIC.MLange](https://mlange.zetic.ai)** --- ## ๐Ÿ‘จ๐Ÿปโ€๐Ÿ’ป Plug-and-play To Your App - The runtime SDK is also provided for your AI model with ZETIC.MLange - **iOS Integration** (Swift) ``` swift // import import ZeticMLange // ... // (1) Load Zetic MLange model let model = try ZeticMLangeModel("MLANGE_PROJECT_API_KEY") // (2) Run model after preparing model inputs let inputs: [Data] = [] // Prepare your inputs try model.run(inputs) // (3) Get output data array let outputs = model.getOutputDataArray() ``` - **Android Integration** (Kotlin, Java) ``` kotlin // import import com.zeticai.mlange.core.model.Target import com.zeticai.mlange.core.model.ZeticMLangeModel // ... // (1) Load Zetic MLange model val model = ZeticMLangeModel(this, "MLANGE_PROJECT_API_KEY") // (2) Run model after preparing model inputs val inputs: Array = // Prepare your inputs model.run(inputs) // (3) Get output buffers of the model val outputs = model.outputBuffers ``` ## ๐Ÿ“ฅ Try It Now - **MLange Dashboard**: [https://mlange.zetic.ai](https://mlange.zetic.ai) - **Demo Apps**: [App Store](https://apps.apple.com/app/zeticapp/id6739862746) / [Google Play](https://play.google.com/store/apps/details?id=com.zeticai.zeticapp) --- ## ๐Ÿงญ Supported Targets - **OS**: Android, iOS, Linux - **NPUs**: MediaTek, Qualcomm, Apple (more coming) - **Frameworks In**: PyTorch, ONNX, TFLite - **Artifacts Out**: NPU-optimized runtime libraries + SDK bindings (Kotlin, Java, Swift, Flutter, React Native) ## ๐Ÿ“ฌ Contact Us - **Website**: [https://zetic.ai](https://zetic.ai) - **Email**: contact@zetic.ai - **LinkedIn**: [linkedin.com/company/zetic-ai](https://linkedin.com/company/zetic-ai) --- **ZETIC.ai** โ€” AI for All, Anytime, Anywhere. Run your AI where it matters: **on the device.**