ZENLLC's picture
Create app.py
85cc00c verified
raw
history blame
750 Bytes
import gradio as gr
from transformers import pipeline
# Load the sentiment-analysis pipeline
sentiment_analyzer = pipeline("sentiment-analysis")
# Define the function to analyze text sentiment
def analyze_sentiment(text):
result = sentiment_analyzer(text)
sentiment = result[0]['label']
score = result[0]['score']
return f"Sentiment: {sentiment} (Confidence: {score:.2f})"
# Create the Gradio interface
app = gr.Interface(
fn=analyze_sentiment,
inputs=gr.Textbox(label="Enter text to analyze"),
outputs=gr.Textbox(label="Sentiment Analysis Result"),
title="Text Sentiment Analyzer",
description="Analyze the sentiment of text input using a pre-trained NLP model."
)
if __name__ == "__main__":
app.launch()