Spaces:
Runtime error
Runtime error
liuyizhang
commited on
Commit
·
bd50af0
1
Parent(s):
0cc37e5
add kosmos-2
Browse files- app.py +104 -26
- kosmos_utils.py +233 -0
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -3,7 +3,8 @@ import warnings
|
|
| 3 |
warnings.filterwarnings('ignore')
|
| 4 |
|
| 5 |
import subprocess, io, os, sys, time
|
| 6 |
-
os.system("pip install gradio==3.36.1")
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
|
| 9 |
from loguru import logger
|
|
@@ -50,7 +51,7 @@ from io import BytesIO
|
|
| 50 |
from diffusers import StableDiffusionInpaintPipeline
|
| 51 |
from huggingface_hub import hf_hub_download
|
| 52 |
|
| 53 |
-
from
|
| 54 |
# relate anything
|
| 55 |
from ram_utils import iou, sort_and_deduplicate, relation_classes, MLP, show_anns, ram_show_mask
|
| 56 |
from ram_train_eval import RamModel,RamPredictor
|
|
@@ -61,6 +62,10 @@ from lama_cleaner.helper import (
|
|
| 61 |
resize_max_size,
|
| 62 |
)
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
|
| 65 |
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
| 66 |
ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
|
@@ -81,6 +86,8 @@ sd_model = None
|
|
| 81 |
lama_cleaner_model= None
|
| 82 |
lama_cleaner_model_device = device
|
| 83 |
ram_model = None
|
|
|
|
|
|
|
| 84 |
|
| 85 |
def get_sam_vit_h_4b8939():
|
| 86 |
if not os.path.exists('./sam_vit_h_4b8939.pth'):
|
|
@@ -254,6 +261,7 @@ def set_device():
|
|
| 254 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 255 |
else:
|
| 256 |
device = 'cpu'
|
|
|
|
| 257 |
|
| 258 |
def load_groundingdino_model():
|
| 259 |
# initialize groundingdino model
|
|
@@ -366,6 +374,8 @@ class Ram_Predictor(RamPredictor):
|
|
| 366 |
def load_ram_model():
|
| 367 |
# load ram model
|
| 368 |
global ram_model
|
|
|
|
|
|
|
| 369 |
model_path = "./checkpoints/ram_epoch12.pth"
|
| 370 |
ram_config = dict(
|
| 371 |
model=dict(
|
|
@@ -510,19 +520,23 @@ mask_source_draw = "draw a mask on input image"
|
|
| 510 |
mask_source_segment = "type what to detect below"
|
| 511 |
|
| 512 |
def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold,
|
| 513 |
-
iou_threshold, inpaint_mode, mask_source_radio, remove_mode, remove_mask_extend, num_relation, cleaner_size_limit=1080):
|
| 514 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 515 |
if (task_type == 'relate anything'):
|
| 516 |
output_images = relate_anything(input_image['image'], num_relation)
|
| 517 |
-
return output_images, gr.Gallery.update(label='relate images')
|
| 518 |
|
| 519 |
text_prompt = text_prompt.strip()
|
| 520 |
if not ((task_type == 'inpainting' or task_type == 'remove') and mask_source_radio == mask_source_draw):
|
| 521 |
if text_prompt == '':
|
| 522 |
-
return [], gr.Gallery.update(label='Detection prompt is not found!😂😂😂😂')
|
| 523 |
|
| 524 |
if input_image is None:
|
| 525 |
-
return [], gr.Gallery.update(label='Please upload a image!😂😂😂😂')
|
| 526 |
|
| 527 |
file_temp = int(time.time())
|
| 528 |
logger.info(f'run_anything_task_002/{device}_[{file_temp}]_{task_type}/{inpaint_mode}/[{mask_source_radio}]/{remove_mode}/{remove_mask_extend}_[{text_prompt}]/[{inpaint_prompt}]___1_')
|
|
@@ -562,7 +576,7 @@ def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_t
|
|
| 562 |
)
|
| 563 |
if boxes_filt.size(0) == 0:
|
| 564 |
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_[{text_prompt}]_1___{groundingdino_device}/[No objects detected, please try others.]_')
|
| 565 |
-
return [], gr.Gallery.update(label='No objects detected, please try others.😂😂😂😂')
|
| 566 |
boxes_filt_ori = copy.deepcopy(boxes_filt)
|
| 567 |
|
| 568 |
pred_dict = {
|
|
@@ -613,7 +627,7 @@ def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_t
|
|
| 613 |
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_3_')
|
| 614 |
if task_type == 'detection' or task_type == 'segment':
|
| 615 |
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_')
|
| 616 |
-
return output_images, gr.Gallery.update(label='result images')
|
| 617 |
elif task_type == 'inpainting' or task_type == 'remove':
|
| 618 |
if inpaint_prompt.strip() == '' and mask_source_radio == mask_source_segment:
|
| 619 |
task_type = 'remove'
|
|
@@ -678,27 +692,48 @@ def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_t
|
|
| 678 |
image_inpainting = image_inpainting.resize((image_pil.size[0], image_pil.size[1]))
|
| 679 |
output_images.append(image_inpainting)
|
| 680 |
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_')
|
| 681 |
-
return output_images, gr.Gallery.update(label='result images')
|
| 682 |
else:
|
| 683 |
logger.info(f"task_type:{task_type} error!")
|
| 684 |
logger.info(f'run_anything_task_[{file_temp}]_9_9_')
|
| 685 |
-
return output_images, gr.Gallery.update(label='result images')
|
| 686 |
|
| 687 |
def change_radio_display(task_type, mask_source_radio):
|
| 688 |
text_prompt_visible = True
|
| 689 |
inpaint_prompt_visible = False
|
| 690 |
mask_source_radio_visible = False
|
| 691 |
num_relation_visible = False
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
if task_type == "
|
| 699 |
text_prompt_visible = False
|
| 700 |
-
|
| 701 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 702 |
|
| 703 |
def get_model_device(module):
|
| 704 |
try:
|
|
@@ -723,12 +758,18 @@ if __name__ == "__main__":
|
|
| 723 |
print(f'args = {args}')
|
| 724 |
|
| 725 |
set_device()
|
| 726 |
-
|
| 727 |
load_groundingdino_model()
|
| 728 |
-
|
|
|
|
|
|
|
|
|
|
| 729 |
load_sd_model()
|
| 730 |
load_lama_cleaner_model()
|
| 731 |
load_ram_model()
|
|
|
|
|
|
|
|
|
|
| 732 |
|
| 733 |
if os.environ.get('IS_MY_DEBUG') is None:
|
| 734 |
os.system("pip list")
|
|
@@ -744,7 +785,7 @@ if __name__ == "__main__":
|
|
| 744 |
with gr.Row():
|
| 745 |
with gr.Column():
|
| 746 |
input_image = gr.Image(source='upload', elem_id="image_upload", tool='sketch', type='pil', label="Upload")
|
| 747 |
-
task_type = gr.Radio(["detection", "segment", "inpainting", "remove", "relate anything"], value="detection",
|
| 748 |
label='Task type', visible=True)
|
| 749 |
mask_source_radio = gr.Radio([mask_source_draw, mask_source_segment],
|
| 750 |
value=mask_source_segment, label="Mask from",
|
|
@@ -752,6 +793,9 @@ if __name__ == "__main__":
|
|
| 752 |
text_prompt = gr.Textbox(label="Detection Prompt[To detect multiple objects, seperating each name with '.', like this: cat . dog . chair ]", placeholder="Cannot be empty")
|
| 753 |
inpaint_prompt = gr.Textbox(label="Inpaint Prompt (if this is empty, then remove)", visible=False)
|
| 754 |
num_relation = gr.Slider(label="How many relations do you want to see", minimum=1, maximum=20, value=5, step=1, visible=False)
|
|
|
|
|
|
|
|
|
|
| 755 |
run_button = gr.Button(label="Run", visible=True)
|
| 756 |
with gr.Accordion("Advanced options", open=False) as advanced_options:
|
| 757 |
box_threshold = gr.Slider(
|
|
@@ -773,16 +817,50 @@ if __name__ == "__main__":
|
|
| 773 |
with gr.Column():
|
| 774 |
image_gallery = gr.Gallery(label="result images", show_label=True, elem_id="gallery", visible=True
|
| 775 |
).style(preview=True, columns=[5], object_fit="scale-down", height="auto")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 776 |
|
| 777 |
run_button.click(fn=run_anything_task, inputs=[
|
| 778 |
-
input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold,
|
|
|
|
|
|
|
| 779 |
|
| 780 |
-
mask_source_radio.change(fn=change_radio_display, inputs=[task_type, mask_source_radio],
|
| 781 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 782 |
|
| 783 |
DESCRIPTION = f'### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything). <br>'
|
| 784 |
DESCRIPTION += f'RAM from [RelateAnything](https://github.com/Luodian/RelateAnything). <br>'
|
| 785 |
DESCRIPTION += f'Remove(cleaner) from [lama-cleaner](https://github.com/Sanster/lama-cleaner). <br>'
|
|
|
|
| 786 |
DESCRIPTION += f'Thanks for their excellent work.'
|
| 787 |
DESCRIPTION += f'<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. \
|
| 788 |
<a href="https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
|
|
|
|
| 3 |
warnings.filterwarnings('ignore')
|
| 4 |
|
| 5 |
import subprocess, io, os, sys, time
|
| 6 |
+
# os.system("pip install gradio==3.36.1")
|
| 7 |
+
os.system("pip install gradio==3.41.2")
|
| 8 |
import gradio as gr
|
| 9 |
|
| 10 |
from loguru import logger
|
|
|
|
| 51 |
from diffusers import StableDiffusionInpaintPipeline
|
| 52 |
from huggingface_hub import hf_hub_download
|
| 53 |
|
| 54 |
+
from utils import computer_info
|
| 55 |
# relate anything
|
| 56 |
from ram_utils import iou, sort_and_deduplicate, relation_classes, MLP, show_anns, ram_show_mask
|
| 57 |
from ram_train_eval import RamModel,RamPredictor
|
|
|
|
| 62 |
resize_max_size,
|
| 63 |
)
|
| 64 |
|
| 65 |
+
# from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 66 |
+
import ast
|
| 67 |
+
from kosmos_utils import *
|
| 68 |
+
|
| 69 |
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
|
| 70 |
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
| 71 |
ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
|
|
|
| 86 |
lama_cleaner_model= None
|
| 87 |
lama_cleaner_model_device = device
|
| 88 |
ram_model = None
|
| 89 |
+
kosmos_model = None
|
| 90 |
+
kosmos_processor = None
|
| 91 |
|
| 92 |
def get_sam_vit_h_4b8939():
|
| 93 |
if not os.path.exists('./sam_vit_h_4b8939.pth'):
|
|
|
|
| 261 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 262 |
else:
|
| 263 |
device = 'cpu'
|
| 264 |
+
print(f'device={device}')
|
| 265 |
|
| 266 |
def load_groundingdino_model():
|
| 267 |
# initialize groundingdino model
|
|
|
|
| 374 |
def load_ram_model():
|
| 375 |
# load ram model
|
| 376 |
global ram_model
|
| 377 |
+
if os.environ.get('IS_MY_DEBUG') is not None:
|
| 378 |
+
return
|
| 379 |
model_path = "./checkpoints/ram_epoch12.pth"
|
| 380 |
ram_config = dict(
|
| 381 |
model=dict(
|
|
|
|
| 520 |
mask_source_segment = "type what to detect below"
|
| 521 |
|
| 522 |
def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold,
|
| 523 |
+
iou_threshold, inpaint_mode, mask_source_radio, remove_mode, remove_mask_extend, num_relation, kosmos_input, cleaner_size_limit=1080):
|
| 524 |
+
if (task_type == 'Kosmos-2'):
|
| 525 |
+
global kosmos_model, kosmos_processor
|
| 526 |
+
kosmos_image, kosmos_text, kosmos_entities = kosmos_generate_predictions(input_image, kosmos_input, kosmos_model, kosmos_processor)
|
| 527 |
+
return None, None, kosmos_image, kosmos_text, kosmos_entities
|
| 528 |
+
|
| 529 |
if (task_type == 'relate anything'):
|
| 530 |
output_images = relate_anything(input_image['image'], num_relation)
|
| 531 |
+
return output_images, gr.Gallery.update(label='relate images'), None, None, None
|
| 532 |
|
| 533 |
text_prompt = text_prompt.strip()
|
| 534 |
if not ((task_type == 'inpainting' or task_type == 'remove') and mask_source_radio == mask_source_draw):
|
| 535 |
if text_prompt == '':
|
| 536 |
+
return [], gr.Gallery.update(label='Detection prompt is not found!😂😂😂😂'), None, None, None
|
| 537 |
|
| 538 |
if input_image is None:
|
| 539 |
+
return [], gr.Gallery.update(label='Please upload a image!😂😂😂😂'), None, None, None
|
| 540 |
|
| 541 |
file_temp = int(time.time())
|
| 542 |
logger.info(f'run_anything_task_002/{device}_[{file_temp}]_{task_type}/{inpaint_mode}/[{mask_source_radio}]/{remove_mode}/{remove_mask_extend}_[{text_prompt}]/[{inpaint_prompt}]___1_')
|
|
|
|
| 576 |
)
|
| 577 |
if boxes_filt.size(0) == 0:
|
| 578 |
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_[{text_prompt}]_1___{groundingdino_device}/[No objects detected, please try others.]_')
|
| 579 |
+
return [], gr.Gallery.update(label='No objects detected, please try others.😂😂😂😂'), None, None, None
|
| 580 |
boxes_filt_ori = copy.deepcopy(boxes_filt)
|
| 581 |
|
| 582 |
pred_dict = {
|
|
|
|
| 627 |
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_3_')
|
| 628 |
if task_type == 'detection' or task_type == 'segment':
|
| 629 |
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_')
|
| 630 |
+
return output_images, gr.Gallery.update(label='result images'), None, None, None
|
| 631 |
elif task_type == 'inpainting' or task_type == 'remove':
|
| 632 |
if inpaint_prompt.strip() == '' and mask_source_radio == mask_source_segment:
|
| 633 |
task_type = 'remove'
|
|
|
|
| 692 |
image_inpainting = image_inpainting.resize((image_pil.size[0], image_pil.size[1]))
|
| 693 |
output_images.append(image_inpainting)
|
| 694 |
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_')
|
| 695 |
+
return output_images, gr.Gallery.update(label='result images'), None, None, None
|
| 696 |
else:
|
| 697 |
logger.info(f"task_type:{task_type} error!")
|
| 698 |
logger.info(f'run_anything_task_[{file_temp}]_9_9_')
|
| 699 |
+
return output_images, gr.Gallery.update(label='result images'), None, None, None
|
| 700 |
|
| 701 |
def change_radio_display(task_type, mask_source_radio):
|
| 702 |
text_prompt_visible = True
|
| 703 |
inpaint_prompt_visible = False
|
| 704 |
mask_source_radio_visible = False
|
| 705 |
num_relation_visible = False
|
| 706 |
+
|
| 707 |
+
image_gallery_visible = True
|
| 708 |
+
kosmos_input_visible = False
|
| 709 |
+
kosmos_output_visible = False
|
| 710 |
+
kosmos_text_output_visible = False
|
| 711 |
+
|
| 712 |
+
if task_type == "Kosmos-2":
|
| 713 |
text_prompt_visible = False
|
| 714 |
+
image_gallery_visible = False
|
| 715 |
+
kosmos_input_visible = True
|
| 716 |
+
kosmos_output_visible = True
|
| 717 |
+
kosmos_text_output_visible = True
|
| 718 |
+
else:
|
| 719 |
+
if task_type == "inpainting":
|
| 720 |
+
inpaint_prompt_visible = True
|
| 721 |
+
if task_type == "inpainting" or task_type == "remove":
|
| 722 |
+
mask_source_radio_visible = True
|
| 723 |
+
if mask_source_radio == mask_source_draw:
|
| 724 |
+
text_prompt_visible = False
|
| 725 |
+
if task_type == "relate anything":
|
| 726 |
+
text_prompt_visible = False
|
| 727 |
+
num_relation_visible = True
|
| 728 |
+
|
| 729 |
+
return (gr.Textbox.update(visible=text_prompt_visible),
|
| 730 |
+
gr.Textbox.update(visible=inpaint_prompt_visible),
|
| 731 |
+
gr.Radio.update(visible=mask_source_radio_visible),
|
| 732 |
+
gr.Slider.update(visible=num_relation_visible),
|
| 733 |
+
gr.Gallery.update(visible=image_gallery_visible),
|
| 734 |
+
gr.Radio.update(visible=kosmos_input_visible),
|
| 735 |
+
gr.Image.update(visible=kosmos_output_visible),
|
| 736 |
+
gr.HighlightedText.update(visible=kosmos_text_output_visible))
|
| 737 |
|
| 738 |
def get_model_device(module):
|
| 739 |
try:
|
|
|
|
| 758 |
print(f'args = {args}')
|
| 759 |
|
| 760 |
set_device()
|
| 761 |
+
|
| 762 |
load_groundingdino_model()
|
| 763 |
+
if os.environ.get('IS_MY_DEBUG') is None:
|
| 764 |
+
get_sam_vit_h_4b8939()
|
| 765 |
+
load_sam_model()
|
| 766 |
+
|
| 767 |
load_sd_model()
|
| 768 |
load_lama_cleaner_model()
|
| 769 |
load_ram_model()
|
| 770 |
+
|
| 771 |
+
if os.environ.get('IS_MY_DEBUG') is None:
|
| 772 |
+
kosmos_model, kosmos_processor = load_kosmos_model(device)
|
| 773 |
|
| 774 |
if os.environ.get('IS_MY_DEBUG') is None:
|
| 775 |
os.system("pip list")
|
|
|
|
| 785 |
with gr.Row():
|
| 786 |
with gr.Column():
|
| 787 |
input_image = gr.Image(source='upload', elem_id="image_upload", tool='sketch', type='pil', label="Upload")
|
| 788 |
+
task_type = gr.Radio(["detection", "segment", "inpainting", "remove", "relate anything", "Kosmos-2"], value="detection",
|
| 789 |
label='Task type', visible=True)
|
| 790 |
mask_source_radio = gr.Radio([mask_source_draw, mask_source_segment],
|
| 791 |
value=mask_source_segment, label="Mask from",
|
|
|
|
| 793 |
text_prompt = gr.Textbox(label="Detection Prompt[To detect multiple objects, seperating each name with '.', like this: cat . dog . chair ]", placeholder="Cannot be empty")
|
| 794 |
inpaint_prompt = gr.Textbox(label="Inpaint Prompt (if this is empty, then remove)", visible=False)
|
| 795 |
num_relation = gr.Slider(label="How many relations do you want to see", minimum=1, maximum=20, value=5, step=1, visible=False)
|
| 796 |
+
|
| 797 |
+
kosmos_input = gr.Radio(["Brief", "Detailed"], label="Kosmos Description Type", value="Brief", visible=False)
|
| 798 |
+
|
| 799 |
run_button = gr.Button(label="Run", visible=True)
|
| 800 |
with gr.Accordion("Advanced options", open=False) as advanced_options:
|
| 801 |
box_threshold = gr.Slider(
|
|
|
|
| 817 |
with gr.Column():
|
| 818 |
image_gallery = gr.Gallery(label="result images", show_label=True, elem_id="gallery", visible=True
|
| 819 |
).style(preview=True, columns=[5], object_fit="scale-down", height="auto")
|
| 820 |
+
kosmos_output = gr.Image(type="pil", label="result images", visible=False)
|
| 821 |
+
kosmos_text_output = gr.HighlightedText(
|
| 822 |
+
label="Generated Description",
|
| 823 |
+
combine_adjacent=False,
|
| 824 |
+
show_legend=True,
|
| 825 |
+
visible=False,
|
| 826 |
+
).style(color_map=color_map)
|
| 827 |
+
# record which text span (label) is selected
|
| 828 |
+
selected = gr.Number(-1, show_label=False, placeholder="Selected", visible=False)
|
| 829 |
+
|
| 830 |
+
# record the current `entities`
|
| 831 |
+
entity_output = gr.Textbox(visible=False)
|
| 832 |
+
|
| 833 |
+
# get the current selected span label
|
| 834 |
+
def get_text_span_label(evt: gr.SelectData):
|
| 835 |
+
if evt.value[-1] is None:
|
| 836 |
+
return -1
|
| 837 |
+
return int(evt.value[-1])
|
| 838 |
+
# and set this information to `selected`
|
| 839 |
+
kosmos_text_output.select(get_text_span_label, None, selected)
|
| 840 |
+
|
| 841 |
+
# update output image when we change the span (enity) selection
|
| 842 |
+
def update_output_image(img_input, image_output, entities, idx):
|
| 843 |
+
entities = ast.literal_eval(entities)
|
| 844 |
+
updated_image = draw_entity_boxes_on_image(img_input, entities, entity_index=idx)
|
| 845 |
+
return updated_image
|
| 846 |
+
selected.change(update_output_image, [kosmos_output, kosmos_output, entity_output, selected], [kosmos_output])
|
| 847 |
|
| 848 |
run_button.click(fn=run_anything_task, inputs=[
|
| 849 |
+
input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold,
|
| 850 |
+
iou_threshold, inpaint_mode, mask_source_radio, remove_mode, remove_mask_extend, num_relation, kosmos_input],
|
| 851 |
+
outputs=[image_gallery, image_gallery, kosmos_output, kosmos_text_output, entity_output], show_progress=True, queue=True)
|
| 852 |
|
| 853 |
+
mask_source_radio.change(fn=change_radio_display, inputs=[task_type, mask_source_radio],
|
| 854 |
+
outputs=[text_prompt, inpaint_prompt, mask_source_radio, num_relation])
|
| 855 |
+
task_type.change(fn=change_radio_display, inputs=[task_type, mask_source_radio],
|
| 856 |
+
outputs=[text_prompt, inpaint_prompt, mask_source_radio, num_relation,
|
| 857 |
+
image_gallery, kosmos_input, kosmos_output, kosmos_text_output
|
| 858 |
+
])
|
| 859 |
|
| 860 |
DESCRIPTION = f'### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything). <br>'
|
| 861 |
DESCRIPTION += f'RAM from [RelateAnything](https://github.com/Luodian/RelateAnything). <br>'
|
| 862 |
DESCRIPTION += f'Remove(cleaner) from [lama-cleaner](https://github.com/Sanster/lama-cleaner). <br>'
|
| 863 |
+
DESCRIPTION += f'Kosmos-2 from [RelateAnything](https://huggingface.co/spaces/ydshieh/Kosmos-2). <br>'
|
| 864 |
DESCRIPTION += f'Thanks for their excellent work.'
|
| 865 |
DESCRIPTION += f'<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. \
|
| 866 |
<a href="https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
|
kosmos_utils.py
ADDED
|
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import numpy as np
|
| 3 |
+
import os
|
| 4 |
+
import requests
|
| 5 |
+
import torch
|
| 6 |
+
import torchvision.transforms as torchvision_T
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 9 |
+
import cv2
|
| 10 |
+
import ast
|
| 11 |
+
|
| 12 |
+
colors = [
|
| 13 |
+
(0, 255, 0),
|
| 14 |
+
(0, 0, 255),
|
| 15 |
+
(255, 255, 0),
|
| 16 |
+
(255, 0, 255),
|
| 17 |
+
(0, 255, 255),
|
| 18 |
+
(114, 128, 250),
|
| 19 |
+
(0, 165, 255),
|
| 20 |
+
(0, 128, 0),
|
| 21 |
+
(144, 238, 144),
|
| 22 |
+
(238, 238, 175),
|
| 23 |
+
(255, 191, 0),
|
| 24 |
+
(0, 128, 0),
|
| 25 |
+
(226, 43, 138),
|
| 26 |
+
(255, 0, 255),
|
| 27 |
+
(0, 215, 255),
|
| 28 |
+
(255, 0, 0),
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
color_map = {
|
| 32 |
+
f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for color_id, color in enumerate(colors)
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def is_overlapping(rect1, rect2):
|
| 37 |
+
x1, y1, x2, y2 = rect1
|
| 38 |
+
x3, y3, x4, y4 = rect2
|
| 39 |
+
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def draw_entity_boxes_on_image(image, entities, show=False, save_path=None, entity_index=-1):
|
| 43 |
+
"""_summary_
|
| 44 |
+
Args:
|
| 45 |
+
image (_type_): image or image path
|
| 46 |
+
collect_entity_location (_type_): _description_
|
| 47 |
+
"""
|
| 48 |
+
if isinstance(image, Image.Image):
|
| 49 |
+
image_h = image.height
|
| 50 |
+
image_w = image.width
|
| 51 |
+
image = np.array(image)[:, :, [2, 1, 0]]
|
| 52 |
+
elif isinstance(image, str):
|
| 53 |
+
if os.path.exists(image):
|
| 54 |
+
pil_img = Image.open(image).convert("RGB")
|
| 55 |
+
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
| 56 |
+
image_h = pil_img.height
|
| 57 |
+
image_w = pil_img.width
|
| 58 |
+
else:
|
| 59 |
+
raise ValueError(f"invaild image path, {image}")
|
| 60 |
+
elif isinstance(image, torch.Tensor):
|
| 61 |
+
# pdb.set_trace()
|
| 62 |
+
image_tensor = image.cpu()
|
| 63 |
+
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
|
| 64 |
+
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
|
| 65 |
+
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
|
| 66 |
+
pil_img = torchvision_T.ToPILImage()(image_tensor)
|
| 67 |
+
image_h = pil_img.height
|
| 68 |
+
image_w = pil_img.width
|
| 69 |
+
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
| 70 |
+
else:
|
| 71 |
+
raise ValueError(f"invaild image format, {type(image)} for {image}")
|
| 72 |
+
|
| 73 |
+
if len(entities) == 0:
|
| 74 |
+
return image
|
| 75 |
+
|
| 76 |
+
indices = list(range(len(entities)))
|
| 77 |
+
if entity_index >= 0:
|
| 78 |
+
indices = [entity_index]
|
| 79 |
+
|
| 80 |
+
# Not to show too many bboxes
|
| 81 |
+
entities = entities[:len(color_map)]
|
| 82 |
+
|
| 83 |
+
new_image = image.copy()
|
| 84 |
+
previous_bboxes = []
|
| 85 |
+
# size of text
|
| 86 |
+
text_size = 1
|
| 87 |
+
# thickness of text
|
| 88 |
+
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
|
| 89 |
+
box_line = 3
|
| 90 |
+
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
|
| 91 |
+
base_height = int(text_height * 0.675)
|
| 92 |
+
text_offset_original = text_height - base_height
|
| 93 |
+
text_spaces = 3
|
| 94 |
+
|
| 95 |
+
# num_bboxes = sum(len(x[-1]) for x in entities)
|
| 96 |
+
used_colors = colors # random.sample(colors, k=num_bboxes)
|
| 97 |
+
|
| 98 |
+
color_id = -1
|
| 99 |
+
for entity_idx, (entity_name, (start, end), bboxes) in enumerate(entities):
|
| 100 |
+
color_id += 1
|
| 101 |
+
if entity_idx not in indices:
|
| 102 |
+
continue
|
| 103 |
+
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
|
| 104 |
+
# if start is None and bbox_id > 0:
|
| 105 |
+
# color_id += 1
|
| 106 |
+
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
|
| 107 |
+
|
| 108 |
+
# draw bbox
|
| 109 |
+
# random color
|
| 110 |
+
color = used_colors[color_id] # tuple(np.random.randint(0, 255, size=3).tolist())
|
| 111 |
+
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
|
| 112 |
+
|
| 113 |
+
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
|
| 114 |
+
|
| 115 |
+
x1 = orig_x1 - l_o
|
| 116 |
+
y1 = orig_y1 - l_o
|
| 117 |
+
|
| 118 |
+
if y1 < text_height + text_offset_original + 2 * text_spaces:
|
| 119 |
+
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
|
| 120 |
+
x1 = orig_x1 + r_o
|
| 121 |
+
|
| 122 |
+
# add text background
|
| 123 |
+
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
|
| 124 |
+
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
|
| 125 |
+
|
| 126 |
+
for prev_bbox in previous_bboxes:
|
| 127 |
+
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):
|
| 128 |
+
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
|
| 129 |
+
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
|
| 130 |
+
y1 += (text_height + text_offset_original + 2 * text_spaces)
|
| 131 |
+
|
| 132 |
+
if text_bg_y2 >= image_h:
|
| 133 |
+
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
|
| 134 |
+
text_bg_y2 = image_h
|
| 135 |
+
y1 = image_h
|
| 136 |
+
break
|
| 137 |
+
|
| 138 |
+
alpha = 0.5
|
| 139 |
+
for i in range(text_bg_y1, text_bg_y2):
|
| 140 |
+
for j in range(text_bg_x1, text_bg_x2):
|
| 141 |
+
if i < image_h and j < image_w:
|
| 142 |
+
if j < text_bg_x1 + 1.35 * c_width:
|
| 143 |
+
# original color
|
| 144 |
+
bg_color = color
|
| 145 |
+
else:
|
| 146 |
+
# white
|
| 147 |
+
bg_color = [255, 255, 255]
|
| 148 |
+
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8)
|
| 149 |
+
|
| 150 |
+
cv2.putText(
|
| 151 |
+
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
|
| 152 |
+
)
|
| 153 |
+
# previous_locations.append((x1, y1))
|
| 154 |
+
previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))
|
| 155 |
+
|
| 156 |
+
pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]])
|
| 157 |
+
if save_path:
|
| 158 |
+
pil_image.save(save_path)
|
| 159 |
+
if show:
|
| 160 |
+
pil_image.show()
|
| 161 |
+
|
| 162 |
+
return pil_image
|
| 163 |
+
|
| 164 |
+
def load_kosmos_model(device):
|
| 165 |
+
ckpt = "ydshieh/kosmos-2-patch14-224"
|
| 166 |
+
kosmos_model = AutoModelForVision2Seq.from_pretrained(ckpt, trust_remote_code=True).to(device)
|
| 167 |
+
kosmos_processor = AutoProcessor.from_pretrained(ckpt, trust_remote_code=True)
|
| 168 |
+
return kosmos_model, kosmos_processor
|
| 169 |
+
|
| 170 |
+
def kosmos_generate_predictions(image_input, text_input, kosmos_model, kosmos_processor):
|
| 171 |
+
if kosmos_model is None:
|
| 172 |
+
return None, None, None
|
| 173 |
+
|
| 174 |
+
# Save the image and load it again to match the original Kosmos-2 demo.
|
| 175 |
+
# (https://github.com/microsoft/unilm/blob/f4695ed0244a275201fff00bee495f76670fbe70/kosmos-2/demo/gradio_app.py#L345-L346)
|
| 176 |
+
user_image_path = "/tmp/user_input_test_image.jpg"
|
| 177 |
+
image_input.save(user_image_path)
|
| 178 |
+
# This might give different results from the original argument `image_input`
|
| 179 |
+
image_input = Image.open(user_image_path)
|
| 180 |
+
|
| 181 |
+
if text_input == "Brief":
|
| 182 |
+
text_input = "<grounding>An image of"
|
| 183 |
+
elif text_input == "Detailed":
|
| 184 |
+
text_input = "<grounding>Describe this image in detail:"
|
| 185 |
+
else:
|
| 186 |
+
text_input = f"<grounding>{text_input}"
|
| 187 |
+
|
| 188 |
+
inputs = kosmos_processor(text=text_input, images=image_input, return_tensors="pt")
|
| 189 |
+
|
| 190 |
+
generated_ids = kosmos_model.generate(
|
| 191 |
+
pixel_values=inputs["pixel_values"].to("cuda"),
|
| 192 |
+
input_ids=inputs["input_ids"][:, :-1].to("cuda"),
|
| 193 |
+
attention_mask=inputs["attention_mask"][:, :-1].to("cuda"),
|
| 194 |
+
img_features=None,
|
| 195 |
+
img_attn_mask=inputs["img_attn_mask"][:, :-1].to("cuda"),
|
| 196 |
+
use_cache=True,
|
| 197 |
+
max_new_tokens=128,
|
| 198 |
+
)
|
| 199 |
+
generated_text = kosmos_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 200 |
+
|
| 201 |
+
# By default, the generated text is cleanup and the entities are extracted.
|
| 202 |
+
processed_text, entities = kosmos_processor.post_process_generation(generated_text)
|
| 203 |
+
|
| 204 |
+
annotated_image = draw_entity_boxes_on_image(image_input, entities, show=False)
|
| 205 |
+
|
| 206 |
+
color_id = -1
|
| 207 |
+
entity_info = []
|
| 208 |
+
filtered_entities = []
|
| 209 |
+
for entity in entities:
|
| 210 |
+
entity_name, (start, end), bboxes = entity
|
| 211 |
+
if start == end:
|
| 212 |
+
# skip bounding bbox without a `phrase` associated
|
| 213 |
+
continue
|
| 214 |
+
color_id += 1
|
| 215 |
+
# for bbox_id, _ in enumerate(bboxes):
|
| 216 |
+
# if start is None and bbox_id > 0:
|
| 217 |
+
# color_id += 1
|
| 218 |
+
entity_info.append(((start, end), color_id))
|
| 219 |
+
filtered_entities.append(entity)
|
| 220 |
+
|
| 221 |
+
colored_text = []
|
| 222 |
+
prev_start = 0
|
| 223 |
+
end = 0
|
| 224 |
+
for idx, ((start, end), color_id) in enumerate(entity_info):
|
| 225 |
+
if start > prev_start:
|
| 226 |
+
colored_text.append((processed_text[prev_start:start], None))
|
| 227 |
+
colored_text.append((processed_text[start:end], f"{color_id}"))
|
| 228 |
+
prev_start = end
|
| 229 |
+
|
| 230 |
+
if end < len(processed_text):
|
| 231 |
+
colored_text.append((processed_text[end:len(processed_text)], None))
|
| 232 |
+
|
| 233 |
+
return annotated_image, colored_text, str(filtered_entities)
|
requirements.txt
CHANGED
|
@@ -23,6 +23,7 @@ numba
|
|
| 23 |
scipy
|
| 24 |
safetensors
|
| 25 |
pynvml
|
|
|
|
| 26 |
|
| 27 |
lama-cleaner==1.1.2
|
| 28 |
openmim==0.1.5
|
|
|
|
| 23 |
scipy
|
| 24 |
safetensors
|
| 25 |
pynvml
|
| 26 |
+
sentencepiece
|
| 27 |
|
| 28 |
lama-cleaner==1.1.2
|
| 29 |
openmim==0.1.5
|