Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Sequence feature extraction class for common feature extractors to preprocess sequences. | |
| """ | |
| from typing import Dict, List, Optional, Union | |
| import numpy as np | |
| from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin | |
| from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy | |
| logger = logging.get_logger(__name__) | |
| class SequenceFeatureExtractor(FeatureExtractionMixin): | |
| """ | |
| This is a general feature extraction class for speech recognition. | |
| Args: | |
| feature_size (`int`): | |
| The feature dimension of the extracted features. | |
| sampling_rate (`int`): | |
| The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). | |
| padding_value (`float`): | |
| The value that is used to fill the padding values / vectors. | |
| """ | |
| def __init__(self, feature_size: int, sampling_rate: int, padding_value: float, **kwargs): | |
| self.feature_size = feature_size | |
| self.sampling_rate = sampling_rate | |
| self.padding_value = padding_value | |
| self.padding_side = kwargs.pop("padding_side", "right") | |
| self.return_attention_mask = kwargs.pop("return_attention_mask", True) | |
| super().__init__(**kwargs) | |
| def pad( | |
| self, | |
| processed_features: Union[ | |
| BatchFeature, | |
| List[BatchFeature], | |
| Dict[str, BatchFeature], | |
| Dict[str, List[BatchFeature]], | |
| List[Dict[str, BatchFeature]], | |
| ], | |
| padding: Union[bool, str, PaddingStrategy] = True, | |
| max_length: Optional[int] = None, | |
| truncation: bool = False, | |
| pad_to_multiple_of: Optional[int] = None, | |
| return_attention_mask: Optional[bool] = None, | |
| return_tensors: Optional[Union[str, TensorType]] = None, | |
| ) -> BatchFeature: | |
| """ | |
| Pad input values / input vectors or a batch of input values / input vectors up to predefined length or to the | |
| max sequence length in the batch. | |
| Padding side (left/right) padding values are defined at the feature extractor level (with `self.padding_side`, | |
| `self.padding_value`) | |
| <Tip> | |
| If the `processed_features` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the | |
| result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of | |
| PyTorch tensors, you will lose the specific device of your tensors however. | |
| </Tip> | |
| Args: | |
| processed_features ([`BatchFeature`], list of [`BatchFeature`], `Dict[str, List[float]]`, `Dict[str, List[List[float]]` or `List[Dict[str, List[float]]]`): | |
| Processed inputs. Can represent one input ([`BatchFeature`] or `Dict[str, List[float]]`) or a batch of | |
| input values / vectors (list of [`BatchFeature`], *Dict[str, List[List[float]]]* or *List[Dict[str, | |
| List[float]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader | |
| collate function. | |
| Instead of `List[float]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), | |
| see the note above for the return type. | |
| padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): | |
| Select a strategy to pad the returned sequences (according to the model's padding side and padding | |
| index) among: | |
| - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
| sequence if provided). | |
| - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | |
| acceptable input length for the model if that argument is not provided. | |
| - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | |
| lengths). | |
| max_length (`int`, *optional*): | |
| Maximum length of the returned list and optionally padding length (see above). | |
| truncation (`bool`): | |
| Activates truncation to cut input sequences longer than `max_length` to `max_length`. | |
| pad_to_multiple_of (`int`, *optional*): | |
| If set will pad the sequence to a multiple of the provided value. | |
| This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability | |
| `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. | |
| return_attention_mask (`bool`, *optional*): | |
| Whether to return the attention mask. If left to the default, will return the attention mask according | |
| to the specific feature_extractor's default. | |
| [What are attention masks?](../glossary#attention-mask) | |
| return_tensors (`str` or [`~utils.TensorType`], *optional*): | |
| If set, will return tensors instead of list of python integers. Acceptable values are: | |
| - `'tf'`: Return TensorFlow `tf.constant` objects. | |
| - `'pt'`: Return PyTorch `torch.Tensor` objects. | |
| - `'np'`: Return Numpy `np.ndarray` objects. | |
| """ | |
| # If we have a list of dicts, let's convert it in a dict of lists | |
| # We do this to allow using this method as a collate_fn function in PyTorch Dataloader | |
| if isinstance(processed_features, (list, tuple)) and isinstance(processed_features[0], (dict, BatchFeature)): | |
| processed_features = { | |
| key: [example[key] for example in processed_features] for key in processed_features[0].keys() | |
| } | |
| # The model's main input name, usually `input_values`, has be passed for padding | |
| if self.model_input_names[0] not in processed_features: | |
| raise ValueError( | |
| "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" | |
| f" to this method that includes {self.model_input_names[0]}, but you provided" | |
| f" {list(processed_features.keys())}" | |
| ) | |
| required_input = processed_features[self.model_input_names[0]] | |
| return_attention_mask = ( | |
| return_attention_mask if return_attention_mask is not None else self.return_attention_mask | |
| ) | |
| if len(required_input) == 0: | |
| if return_attention_mask: | |
| processed_features["attention_mask"] = [] | |
| return processed_features | |
| # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays | |
| # and rebuild them afterwards if no return_tensors is specified | |
| # Note that we lose the specific device the tensor may be on for PyTorch | |
| first_element = required_input[0] | |
| if isinstance(first_element, (list, tuple)): | |
| # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. | |
| index = 0 | |
| while len(required_input[index]) == 0: | |
| index += 1 | |
| if index < len(required_input): | |
| first_element = required_input[index][0] | |
| if return_tensors is None: | |
| if is_tf_tensor(first_element): | |
| return_tensors = "tf" | |
| elif is_torch_tensor(first_element): | |
| return_tensors = "pt" | |
| elif isinstance(first_element, (int, float, list, tuple, np.ndarray)): | |
| return_tensors = "np" | |
| else: | |
| raise ValueError( | |
| f"type of {first_element} unknown: {type(first_element)}. " | |
| "Should be one of a python, numpy, pytorch or tensorflow object." | |
| ) | |
| for key, value in processed_features.items(): | |
| if isinstance(value[0], (int, float)): | |
| processed_features[key] = to_numpy(value) | |
| else: | |
| processed_features[key] = [to_numpy(v) for v in value] | |
| # Convert padding_strategy in PaddingStrategy | |
| padding_strategy = self._get_padding_strategies(padding=padding, max_length=max_length) | |
| required_input = processed_features[self.model_input_names[0]] | |
| batch_size = len(required_input) | |
| if not all(len(v) == batch_size for v in processed_features.values()): | |
| raise ValueError("Some items in the output dictionary have a different batch size than others.") | |
| truncated_inputs = [] | |
| for i in range(batch_size): | |
| inputs = {k: v[i] for k, v in processed_features.items()} | |
| # truncation | |
| inputs_slice = self._truncate( | |
| inputs, | |
| max_length=max_length, | |
| pad_to_multiple_of=pad_to_multiple_of, | |
| truncation=truncation, | |
| ) | |
| truncated_inputs.append(inputs_slice) | |
| if padding_strategy == PaddingStrategy.LONGEST: | |
| # make sure that `max_length` cannot be longer than the longest truncated length | |
| max_length = max(len(input_slice[self.model_input_names[0]]) for input_slice in truncated_inputs) | |
| padding_strategy = PaddingStrategy.MAX_LENGTH | |
| batch_outputs = {} | |
| for i in range(batch_size): | |
| # padding | |
| outputs = self._pad( | |
| truncated_inputs[i], | |
| max_length=max_length, | |
| padding_strategy=padding_strategy, | |
| pad_to_multiple_of=pad_to_multiple_of, | |
| return_attention_mask=return_attention_mask, | |
| ) | |
| for key, value in outputs.items(): | |
| if key not in batch_outputs: | |
| batch_outputs[key] = [] | |
| if value.dtype is np.dtype(np.float64): | |
| value = value.astype(np.float32) | |
| batch_outputs[key].append(value) | |
| return BatchFeature(batch_outputs, tensor_type=return_tensors) | |
| def _pad( | |
| self, | |
| processed_features: Union[Dict[str, np.ndarray], BatchFeature], | |
| max_length: Optional[int] = None, | |
| padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | |
| pad_to_multiple_of: Optional[int] = None, | |
| return_attention_mask: Optional[bool] = None, | |
| ) -> dict: | |
| """ | |
| Pad inputs (on left/right and up to predefined length or max length in the batch) | |
| Args: | |
| processed_features (`Union[Dict[str, np.ndarray], BatchFeature]`): | |
| Dictionary of input values (`np.ndarray[float]`) / input vectors (`List[np.ndarray[float]]`) or batch | |
| of inputs values (`List[np.ndarray[int]]`) / input vectors (`List[np.ndarray[int]]`) | |
| max_length (`int`, *optional*): | |
| Maximum length of the returned list and optionally padding length (see below) | |
| padding_strategy (`PaddingStrategy`, *optional*, default to `PaddingStrategy.DO_NOT_PAD`): | |
| PaddingStrategy to use for padding. | |
| - PaddingStrategy.LONGEST Pad to the longest sequence in the batch | |
| - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) | |
| - PaddingStrategy.DO_NOT_PAD: Do not pad | |
| The feature_extractor padding sides are defined in self.padding_side: | |
| - 'left': pads on the left of the sequences | |
| - 'right': pads on the right of the sequences | |
| pad_to_multiple_of (`int`, *optional*): | |
| Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to | |
| enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs | |
| which benefit from having sequence lengths be a multiple of 128. | |
| return_attention_mask (`bool`, *optional*): | |
| Set to False to avoid returning attention mask (default: set to model specifics) | |
| """ | |
| required_input = processed_features[self.model_input_names[0]] | |
| if padding_strategy == PaddingStrategy.LONGEST: | |
| max_length = len(required_input) | |
| if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): | |
| max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of | |
| needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) < max_length | |
| if return_attention_mask and "attention_mask" not in processed_features: | |
| processed_features["attention_mask"] = np.ones(len(required_input), dtype=np.int32) | |
| if needs_to_be_padded: | |
| difference = max_length - len(required_input) | |
| if self.padding_side == "right": | |
| if return_attention_mask: | |
| processed_features["attention_mask"] = np.pad( | |
| processed_features["attention_mask"], (0, difference) | |
| ) | |
| padding_shape = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) | |
| processed_features[self.model_input_names[0]] = np.pad( | |
| required_input, padding_shape, "constant", constant_values=self.padding_value | |
| ) | |
| elif self.padding_side == "left": | |
| if return_attention_mask: | |
| processed_features["attention_mask"] = np.pad( | |
| processed_features["attention_mask"], (difference, 0) | |
| ) | |
| padding_shape = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) | |
| processed_features[self.model_input_names[0]] = np.pad( | |
| required_input, padding_shape, "constant", constant_values=self.padding_value | |
| ) | |
| else: | |
| raise ValueError("Invalid padding strategy:" + str(self.padding_side)) | |
| return processed_features | |
| def _truncate( | |
| self, | |
| processed_features: Union[Dict[str, np.ndarray], BatchFeature], | |
| max_length: Optional[int] = None, | |
| pad_to_multiple_of: Optional[int] = None, | |
| truncation: Optional[bool] = None, | |
| ): | |
| """ | |
| Truncate inputs to predefined length or max length in the batch | |
| Args: | |
| processed_features(`Union[Dict[str, np.ndarray], BatchFeature]`): | |
| Dictionary of input values (`np.ndarray[float]`) / input vectors (`List[np.ndarray[float]]`) or batch | |
| of inputs values (`List[np.ndarray[int]]`) / input vectors (`List[np.ndarray[int]]`) | |
| max_length (`int`, *optional*): | |
| maximum length of the returned list and optionally padding length (see below) | |
| pad_to_multiple_of (`int`, *optional*) : | |
| Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to | |
| enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs | |
| which benefit from having sequence lengths be a multiple of 128. | |
| truncation (`bool`, *optional*): | |
| Activates truncation to cut input sequences longer than `max_length` to `max_length`. | |
| """ | |
| if not truncation: | |
| return processed_features | |
| elif truncation and max_length is None: | |
| raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined.") | |
| required_input = processed_features[self.model_input_names[0]] | |
| # find `max_length` that fits `pad_to_multiple_of` | |
| if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): | |
| max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of | |
| needs_to_be_truncated = len(required_input) > max_length | |
| if needs_to_be_truncated: | |
| processed_features[self.model_input_names[0]] = processed_features[self.model_input_names[0]][:max_length] | |
| if "attention_mask" in processed_features: | |
| processed_features["attention_mask"] = processed_features["attention_mask"][:max_length] | |
| return processed_features | |
| def _get_padding_strategies(self, padding=False, max_length=None): | |
| """ | |
| Find the correct padding strategy | |
| """ | |
| # Get padding strategy | |
| if padding is not False: | |
| if padding is True: | |
| padding_strategy = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch | |
| elif not isinstance(padding, PaddingStrategy): | |
| padding_strategy = PaddingStrategy(padding) | |
| elif isinstance(padding, PaddingStrategy): | |
| padding_strategy = padding | |
| else: | |
| padding_strategy = PaddingStrategy.DO_NOT_PAD | |
| # Set max length if needed | |
| if max_length is None: | |
| if padding_strategy == PaddingStrategy.MAX_LENGTH: | |
| raise ValueError( | |
| f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" | |
| ) | |
| # Test if we have a padding value | |
| if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): | |
| raise ValueError( | |
| "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" | |
| " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." | |
| ) | |
| return padding_strategy | |